The joint pdf of random variables ‘X’ and ‘Y’ is
Find
a. The marginal pdfs, fX(x) and fY(y).
b. The conditional pdfs, fX/Y(x/y) and fY/X(y/x)
c. The E(X/Y=1)
d. Are ‘X’ and ‘Y’ statistically independent?
Since joint pdf is not given in the question hence we can assume that
Joint pdf of variables X and Y is
"f_{X,Y}(x,y) = 6xy" when "0 \\le x \\le 1, 0\\le y \\le \\sqrt{x}"
Otherwise
a.) "f_{X}(x) = \\int_{-\\infty}^{\\infty} f_{XY}(x,y)dy"
"= \\int_{0}^{\\sqrt{x}}6xy dy"
"= 3x^2"
Thus, "f_{X}(x) = 3x^2 \\hspace{3mm}0 \\le x\\le 1"
0 Otherwise
To find "f_{Y}(y) \\hspace{2mm}for \\hspace{2mm} 0 \\le y \\le 1" , we can write,
"f_{Y}(y) = \\int_{-\\infty}^{\\infty} f_{XY}(x,y)dx"
"= \\int_{y^2}^{1} 6xydx"
"= 3y(1-y^4)"
"f_{Y}(y ) = 3y(1-y^4)" "0 \\le y \\le 1"
"= 0" Otherwise
b.) The conditional pdf,
"f_{Y|X}(y|x) = \\dfrac{f_{X,Y}(x,y)}{f_X(x)}"
"= \\dfrac{6xy}{3x^2} = \\dfrac{2y}{x}"
"f_{X|Y}(x|y) = \\dfrac{f_{X,Y}(x,y)}{f_Y(x)}"
"= \\dfrac{6xy}{3y(1-y^4)} = \\dfrac{2x}{(1-y^4)}"
c.) The "E(X\/Y = y)"
"= \\int_{-\\infty}^{\\infty} xf_{X|Y}(x|y)dx"
"= \\int_{y^2}^{1} x \\dfrac{2x}{1-y^4}dx"
"= \\dfrac{2(1-y^6)}{3(1-y^4)}"
d.) Yes X and Y are statistically independent.
Comments
Leave a comment