Solution :
Mean= μ = x ˉ = Σ x i n =\mu=\bar{x}=\dfrac{\Sigma x_i}{n} = μ = x ˉ = n Σ x i = 75 + 80 + 80 + 74 + 84 + 78 + 89 + 72 + 83 + 76 + 75 + 87 + 78 + 79 + 88 15 =\dfrac{75+80+ 80+ 74+ 84+ 78+ 89+ 72+83+ 76+ 75+ 87+ 78+ 79+ 88}{15} = 15 75 + 80 + 80 + 74 + 84 + 78 + 89 + 72 + 83 + 76 + 75 + 87 + 78 + 79 + 88
= 1198 15 = 79.867 =\dfrac{1198}{15}=79.867 = 15 1198 = 79.867
Variance= σ 2 = Σ ( x i − x ˉ ) 2 n =\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n} = σ 2 = n Σ ( x i − x ˉ ) 2
= ( 75 − 1198 15 ) 2 + ( 80 − 1198 15 ) 2 + . . . + ( 88 − 1198 15 ) 2 15 =\dfrac{(75-\dfrac{1198}{15})^2+(80-\dfrac{1198}{15})^2+...+(88-\dfrac{1198}{15})^2}{15} = 15 ( 75 − 15 1198 ) 2 + ( 80 − 15 1198 ) 2 + ... + ( 88 − 15 1198 ) 2
= 393.733 15 = 26.2488 =\dfrac{393.733}{15}=26.2488 = 15 393.733 = 26.2488
Then, standard deviation, σ = 26.2488 = 5.123 \sigma=\sqrt{26.2488} =5.123 σ = 26.2488 = 5.123
Now, confidence interval, CI= ( x ˉ ± z σ n ) =(\bar{x}\pm z\dfrac{\sigma}{\sqrt{n}}) = ( x ˉ ± z n σ )
For 90% CI, z = 1.645 z=1.645 z = 1.645
So, 90% CI= ( 79.867 ± 1.645 × 5.123 15 ) = ( 77.791 , 82.142 ) =(79.867\pm1.645\times \dfrac{5.123}{\sqrt{15}})=(77.791,82.142) = ( 79.867 ± 1.645 × 15 5.123 ) = ( 77.791 , 82.142 )
For 95% CI, z = 1.96 z=1.96 z = 1.96
So, 95% CI= ( 79.867 ± 1.96 × 5.123 15 ) = ( 77.374 , 82.559 ) =(79.867\pm1.96\times \dfrac{5.123}{\sqrt{15}})=(77.374,82.559) = ( 79.867 ± 1.96 × 15 5.123 ) = ( 77.374 , 82.559 )
Comments
Dear fizzah, You're welcome. We are glad to be helpful. If you liked our service please press like-button beside answer field. Thank you!
thanks alot!
Leave a comment