Arterial blood gas analyses performed on a sample of 15 physically active adult males yielded the following resting values: 75, 80, 80, 74, 84, 78, 89, 72, 83, 76, 75, 87, 78, 79, 88 Compute the 90 and 95 percent confidence interval for the mean of the population
Solution:
Mean"=\\mu=\\bar{x}=\\dfrac{\\Sigma x_i}{n}" "=\\dfrac{75+80+ 80+ 74+ 84+ 78+ 89+ 72+83+ 76+ 75+ 87+ 78+ 79+ 88}{15}"
"=\\dfrac{1198}{15}=79.867"
Variance"=\\sigma^2=\\dfrac{\\Sigma(x_i-\\bar{x})^2}{n}"
"=\\dfrac{(75-\\dfrac{1198}{15})^2+(80-\\dfrac{1198}{15})^2+...+(88-\\dfrac{1198}{15})^2}{15}"
"=\\dfrac{393.733}{15}=26.2488"
Then, standard deviation, "\\sigma=\\sqrt{26.2488} =5.123"
Now, confidence interval, CI"=(\\bar{x}\\pm z\\dfrac{\\sigma}{\\sqrt{n}})"
For 90% CI, "z=1.645"
So, 90% CI"=(79.867\\pm1.645\\times \\dfrac{5.123}{\\sqrt{15}})=(77.791,82.142)"
For 95% CI, "z=1.96"
So, 95% CI"=(79.867\\pm1.96\\times \\dfrac{5.123}{\\sqrt{15}})=(77.374,82.559)"
Comments
Dear fizzah, You're welcome. We are glad to be helpful. If you liked our service please press like-button beside answer field. Thank you!
thanks alot!
Leave a comment