Answer to Question #190309 in Statistics and Probability for fizzah

Question #190309

Arterial blood gas analyses performed on a sample of 15 physically active adult males yielded the following resting values: 75, 80, 80, 74, 84, 78, 89, 72, 83, 76, 75, 87, 78, 79, 88 Compute the 90 and 95 percent confidence interval for the mean of the population


1
Expert's answer
2021-05-07T14:24:49-0400

Solution:

Mean=μ=xˉ=Σxin=\mu=\bar{x}=\dfrac{\Sigma x_i}{n} =75+80+80+74+84+78+89+72+83+76+75+87+78+79+8815=\dfrac{75+80+ 80+ 74+ 84+ 78+ 89+ 72+83+ 76+ 75+ 87+ 78+ 79+ 88}{15}

=119815=79.867=\dfrac{1198}{15}=79.867

Variance=σ2=Σ(xixˉ)2n=\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}

=(75119815)2+(80119815)2+...+(88119815)215=\dfrac{(75-\dfrac{1198}{15})^2+(80-\dfrac{1198}{15})^2+...+(88-\dfrac{1198}{15})^2}{15}

=393.73315=26.2488=\dfrac{393.733}{15}=26.2488

Then, standard deviation, σ=26.2488=5.123\sigma=\sqrt{26.2488} =5.123

Now, confidence interval, CI=(xˉ±zσn)=(\bar{x}\pm z\dfrac{\sigma}{\sqrt{n}})

For 90% CI, z=1.645z=1.645

So, 90% CI=(79.867±1.645×5.12315)=(77.791,82.142)=(79.867\pm1.645\times \dfrac{5.123}{\sqrt{15}})=(77.791,82.142)

For 95% CI, z=1.96z=1.96

So, 95% CI=(79.867±1.96×5.12315)=(77.374,82.559)=(79.867\pm1.96\times \dfrac{5.123}{\sqrt{15}})=(77.374,82.559)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
10.05.21, 12:13

Dear fizzah, You're welcome. We are glad to be helpful. If you liked our service please press like-button beside answer field. Thank you!

fizzah
08.05.21, 07:56

thanks alot!

Leave a comment