Answer to Question #187902 in Statistics and Probability for Mayondi Chikwama

Question #187902
An X-bar control chart monitors the mean of a process by checking that the average stays between control.pngand control2.png. When the process is under control,
(a) What is the probability that five consecutive sample means of n cases stay within these limits?

(b) What is the probability that all of the means for 100 days falls within the control limits?

The following content
1
Expert's answer
2021-05-07T11:35:48-0400

(a)

The choice α=0.0027\alpha=0.0027 puts the control limits at Zα2Z_{\frac{\alpha}{2}} standard errors from the process target. The probability that a sample mean goes out of the limit is 0.00270.0027 . This Gives the probability that a sample mean stay within these limits is 10.0027=0.9973.1-0.0027=0.9973.  


Therefore, the probability that five consecutive sample means of n cases stay within these limit is:

    (0.9973)5=0.986573(0.9973)^5=0.986573


(b) The choice α=0.0027\alpha=0.0027 puts the control limits at Zα2Z_{\frac{\alpha}{2}} standard errors from the process target. The probability that a sample mean goes out of the limit is 0.0027.0.0027. This Gives the probability that a sample mean stay within these limits is 10.0027=0.9973.1-0.0027=0.9973.


Therefore, the probability that all 100 sample means of 100 days (cases) stay within these limit is:

    (0.9973)100=0.763101(0.9973)^{100}=0.763101


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment