Question #186038

 A social psychologist is interested in gender differences in the sociability of teenagers. Using the number of good friends as an indicator of sociability, the researcher found that females had on average 5.9 close friends (s=3.1; n=44) and males had on average 4.8 close friends (s=2.6; n=35). Is the difference in the sociability between males and

females statistically significant? Set alpha to 0.02 find Null and research hypothesis 1 or two tailed? Find Critical value? find test statistic?


1
Expert's answer
2021-04-28T10:51:08-0400

To test gender differences in the sociability of teenagers.To \ test \ gender \ differences \ in \ the \ sociability \ of \ teenagers.\\ Using the number of good friends as an indicator of sociability.Using \ the \ number \ of \ good \ friends \ as \ an \ indicator \ of \ sociability.\\

Females had on average 5.9 close friends (s=3.1;n=44)Females \ had \ on \ average \ 5.9 \ close \ f riends \ (s=3.1; n=44)

Males had on average 4.8 close friends (s=2.6;n=35)Let xˉ1=5.9, s1=3.1 & n1=44xˉ2=4.8, s2=2.6 & n2=35Let the null hypothesis be H0 : There is no significant differenceof sociabilty in male & female μ1=μ2The alternative hypothesis be H1:μ1 μ2The test statistic for the difference of means isz=xˉ1xˉ2s12n1+s22n2=5.94.8(3.1)244+(2.6)235=1.10.2184090909+0.1931428571=1.10.411551948=0.64152z=0.64(approximately)For the significance leve α=0.02the critical value is zα2=z0.01=2.33(for two tailed test)The test statistic z< 2.33Therefore,there is no reason to reject the null hypothesis.Hence,we can conclude that there is no significantdifference in sociability of male and female at 0.02significance level, by two tailed test.Males \ had \ on \ average \ 4.8 \ close \ friends \ (s=2.6; n=35)\\ \Rightarrow Let \ \bar x_1 =5.9, \ s_1 =3.1 \ \& \ n_1 = 44\\ \bar x_2 =4.8, \ s_2 =2.6 \ \& \ n_2 = 35\\ Let \ the \ null \ hypothesis \ be \ H_0 \ : \ There \ is \ no \ significant \ difference \\ of \ sociabilty \ in \ male \ \& \ female\ \Rightarrow \mu_1 =\mu_2 \\ The \ alternative \ hypothesis \ be\ H_1: \mu_1 \ne \ \mu_2 \\ The \ test \ statistic \ for \ the \ difference \ of \ means \ is \\ z=\frac{\bar x_1-\bar x_2}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}}\\ =\frac{5.9-4.8}{\sqrt{\frac{(3.1)^2}{44}+\frac{(2.6)^2}{35}}}\\ =\frac{1.1}{\sqrt{0.2184090909+0.1931428571}}\\ =\frac{1.1}{\sqrt{0.411551948}}\\ =0.64152\\ \Rightarrow z=0.64 (approximately)\\ For \ the \ significance \ leve \ \alpha = 0.02 \\ the \ critical \ value \ is \ z_{\frac{\alpha}{2}}=z_{0.01}=2.33 \\ (for \ two \ tailed \ test )\\ The \ test\ statistic \ z \lt \ 2.33\\ Therefore, there \ is \ no \ reason \ to \ reject \ the \ null \ hypothesis.\\ Hence, we \ can \ conclude \ that \ there \ is \ no\ significant \\ difference \ in \ sociability \ of \ male \ and \ female\ at \ 0.02 \\ significance \ level, \ by \ two \ tailed \ test.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS