Answer to Question #185948 in Statistics and Probability for Sajid

Question #185948

Q(1) [10 Marks] [CLO2,C3] (a) You take an exam that contains 20 multiple-choice questions. Each question has 4 possible options. You know the answer to 10 questions, but you have no idea about the other 10 questions so you choose answers randomly. Your score X on the exam is the total number of correct answers. Find the PMF of X. Find P(X > 15). (b) Packets at a certain node on the internet arrive with a rate of 100 packets per minute. Find the probability that no packets arrive in 6 seconds. Find the probability that 2 or more packets arrive in the first 6 seconds.


1
Expert's answer
2021-04-28T06:49:41-0400

Solution (a):

Let's define the random variable Y as the number of your correct answers to the 10 questions you answer randomly. Then your total score will be X=Y+10. First, let's find the PMF of Y. For each question, your success probability is "\\frac{1}{4}" . Hence, you perform 10 independent "\\operatorname{Bernoulli}\\left(\\frac{1}{4}\\right)" trials and Y is the number of successes. Thus, we conclude "Y \\sim Binomial \\left(10, \\frac{1}{4}\\right)" , so

"P_{Y}(y)=\\left\\{\\begin{array}{ll}\n\n\\left(\\begin{array}{c}\n\n10 \\\\\n\ny\n\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{y}\\left(\\frac{3}{4}\\right)^{10-y} & \\text { for } y=0,1,2,3, \\ldots, 10 \\\\\n\n0 & \\text { otherwise }\n\n\\end{array}\\right."

Now we need to find the PMF of X=Y+10. First note that "R_{X}=\\{10,11,12, \\ldots, 20\\}" . We can write


"\\begin{aligned}\n\nP_{X}(10) &=P(X=10)=P(Y+10=10) \\\\\n\n&=P(Y=0)=\\left(\\begin{array}{c}\n\n10 \\\\\n\n0\n\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{0}\\left(\\frac{3}{4}\\right)^{10-0}=\\left(\\frac{3}{4}\\right)^{10} \\\\\n\nP_{X}(11) &=P(X=11)=P(Y+10=11) \\\\\n\n&=P(Y=1)=\\left(\\begin{array}{c}\n\n10 \\\\\n\n1\n\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{1}\\left(\\frac{3}{4}\\right)^{10-1}=10\\left(\\frac{1}{4}\\right)\\left(\\frac{3}{4}\\right)^{9} .\n\n\\end{aligned}"

In general for "k \\in R_{X}=\\{10,11,12, \\ldots, 20\\}" ,

"\\begin{aligned}\n\nP_{X}(k) &=P(X=k)=P(Y+10=k) \\\\\n\n&=P(Y=k-10)=\\left(\\begin{array}{l}\n\n10 \\\\\n\nk-10\n\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{k-10}\\left(\\frac{3}{4}\\right)^{20-k} \n\n\\end{aligned}"

Thus,

"P_{X}(k)=\\left\\{\\begin{array}{ll}\n\n\\left(\\begin{array}{l}\n\n10 \\\\\n\nk-10\n\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{k-10}\\left(\\frac{3}{4}\\right)^{20-k} & \\text { for } k=10,11,12, \\ldots, 20 \\\\\n\n0 & \\text { otherwise }\n\n\\end{array}\\right."

In order to calculate P(X>15), we know we should consider y=6,7,8,9,10

"\\begin{array}{c}\nP_{Y}(y)=\\left\\{\\begin{array}{ll}\n\\left(\\begin{array}{c}\n10 \\\\\ny\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{y}\\left(\\frac{3}{4}\\right)^{10-y} & \\text { for } y=6,7,8,9,10 \\\\\n0 & \\text { otherwise }\n\\end{array}\\right. \\\\\nP_{X}(k)=\\left\\{\\begin{array}{ll}\n\\left(\\begin{array}{c}\n10 \\\\\nk-10\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{k-10}\\left(\\frac{3}{4}\\right)^{20-k} & \\text { for } k=16,17, \\ldots, 20 \\\\\n0 & \\text { otherwise }\n\\end{array}\\right. \\\\\nP(X>15)=P_{X}(16)+P_{X}(17)+P_{X}(18)+P_{X}(19)+P_{X}(20) \\\\\n=\\left(\\begin{array}{c}\n10 \\\\\n6\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{6}\\left(\\frac{3}{4}\\right)^{4}+\\left(\\begin{array}{c}\n10 \\\\\n7\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{7}\\left(\\frac{3}{4}\\right)^{3}+\\left(\\begin{array}{c}\n10 \\\\\n8\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{8}\\left(\\frac{3}{4}\\right)^{2} \\\\\n+\\left(\\begin{array}{c}\n10 \\\\\n9\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{9}\\left(\\frac{3}{4}\\right)^{1}+\\left(\\begin{array}{c}\n10 \\\\\n10\n\\end{array}\\right)\\left(\\frac{1}{4}\\right)^{10}\\left(\\frac{3}{4}\\right)^{0}\n\\end{array}"

"=0.019727"

(b):

Given, "\\lambda=100" per minute"=\\dfrac{100}{60}\\ or\\ \\dfrac{5}{3}" per second

For 6 second, "\\lambda=\\dfrac{5}{3}\\times 6=10"

"P(X=0)=10^0\\dfrac{e^{-10}}{0!}=0.00004539"

Next, "P(X\\ge2)=1-P(X<2)=1-[P(X=0+P(X=1)]"

"=1-(0.00004539+10^1\\dfrac{e^{-10}}{1!})=0.9995006"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS