Question #185948

Q(1) [10 Marks] [CLO2,C3] (a) You take an exam that contains 20 multiple-choice questions. Each question has 4 possible options. You know the answer to 10 questions, but you have no idea about the other 10 questions so you choose answers randomly. Your score X on the exam is the total number of correct answers. Find the PMF of X. Find P(X > 15). (b) Packets at a certain node on the internet arrive with a rate of 100 packets per minute. Find the probability that no packets arrive in 6 seconds. Find the probability that 2 or more packets arrive in the first 6 seconds.


1
Expert's answer
2021-04-28T06:49:41-0400

Solution (a):

Let's define the random variable Y as the number of your correct answers to the 10 questions you answer randomly. Then your total score will be X=Y+10. First, let's find the PMF of Y. For each question, your success probability is 14\frac{1}{4} . Hence, you perform 10 independent Bernoulli(14)\operatorname{Bernoulli}\left(\frac{1}{4}\right) trials and Y is the number of successes. Thus, we conclude YBinomial(10,14)Y \sim Binomial \left(10, \frac{1}{4}\right) , so

PY(y)={(10y)(14)y(34)10y for y=0,1,2,3,,100 otherwise P_{Y}(y)=\left\{\begin{array}{ll} \left(\begin{array}{c} 10 \\ y \end{array}\right)\left(\frac{1}{4}\right)^{y}\left(\frac{3}{4}\right)^{10-y} & \text { for } y=0,1,2,3, \ldots, 10 \\ 0 & \text { otherwise } \end{array}\right.

Now we need to find the PMF of X=Y+10. First note that RX={10,11,12,,20}R_{X}=\{10,11,12, \ldots, 20\} . We can write


PX(10)=P(X=10)=P(Y+10=10)=P(Y=0)=(100)(14)0(34)100=(34)10PX(11)=P(X=11)=P(Y+10=11)=P(Y=1)=(101)(14)1(34)101=10(14)(34)9.\begin{aligned} P_{X}(10) &=P(X=10)=P(Y+10=10) \\ &=P(Y=0)=\left(\begin{array}{c} 10 \\ 0 \end{array}\right)\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{10-0}=\left(\frac{3}{4}\right)^{10} \\ P_{X}(11) &=P(X=11)=P(Y+10=11) \\ &=P(Y=1)=\left(\begin{array}{c} 10 \\ 1 \end{array}\right)\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{10-1}=10\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{9} . \end{aligned}

In general for kRX={10,11,12,,20}k \in R_{X}=\{10,11,12, \ldots, 20\} ,

PX(k)=P(X=k)=P(Y+10=k)=P(Y=k10)=(10k10)(14)k10(34)20k\begin{aligned} P_{X}(k) &=P(X=k)=P(Y+10=k) \\ &=P(Y=k-10)=\left(\begin{array}{l} 10 \\ k-10 \end{array}\right)\left(\frac{1}{4}\right)^{k-10}\left(\frac{3}{4}\right)^{20-k} \end{aligned}

Thus,

PX(k)={(10k10)(14)k10(34)20k for k=10,11,12,,200 otherwise P_{X}(k)=\left\{\begin{array}{ll} \left(\begin{array}{l} 10 \\ k-10 \end{array}\right)\left(\frac{1}{4}\right)^{k-10}\left(\frac{3}{4}\right)^{20-k} & \text { for } k=10,11,12, \ldots, 20 \\ 0 & \text { otherwise } \end{array}\right.

In order to calculate P(X>15), we know we should consider y=6,7,8,9,10

PY(y)={(10y)(14)y(34)10y for y=6,7,8,9,100 otherwise PX(k)={(10k10)(14)k10(34)20k for k=16,17,,200 otherwise P(X>15)=PX(16)+PX(17)+PX(18)+PX(19)+PX(20)=(106)(14)6(34)4+(107)(14)7(34)3+(108)(14)8(34)2+(109)(14)9(34)1+(1010)(14)10(34)0\begin{array}{c} P_{Y}(y)=\left\{\begin{array}{ll} \left(\begin{array}{c} 10 \\ y \end{array}\right)\left(\frac{1}{4}\right)^{y}\left(\frac{3}{4}\right)^{10-y} & \text { for } y=6,7,8,9,10 \\ 0 & \text { otherwise } \end{array}\right. \\ P_{X}(k)=\left\{\begin{array}{ll} \left(\begin{array}{c} 10 \\ k-10 \end{array}\right)\left(\frac{1}{4}\right)^{k-10}\left(\frac{3}{4}\right)^{20-k} & \text { for } k=16,17, \ldots, 20 \\ 0 & \text { otherwise } \end{array}\right. \\ P(X>15)=P_{X}(16)+P_{X}(17)+P_{X}(18)+P_{X}(19)+P_{X}(20) \\ =\left(\begin{array}{c} 10 \\ 6 \end{array}\right)\left(\frac{1}{4}\right)^{6}\left(\frac{3}{4}\right)^{4}+\left(\begin{array}{c} 10 \\ 7 \end{array}\right)\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{3}+\left(\begin{array}{c} 10 \\ 8 \end{array}\right)\left(\frac{1}{4}\right)^{8}\left(\frac{3}{4}\right)^{2} \\ +\left(\begin{array}{c} 10 \\ 9 \end{array}\right)\left(\frac{1}{4}\right)^{9}\left(\frac{3}{4}\right)^{1}+\left(\begin{array}{c} 10 \\ 10 \end{array}\right)\left(\frac{1}{4}\right)^{10}\left(\frac{3}{4}\right)^{0} \end{array}

=0.019727=0.019727

(b):

Given, λ=100\lambda=100 per minute=10060 or 53=\dfrac{100}{60}\ or\ \dfrac{5}{3} per second

For 6 second, λ=53×6=10\lambda=\dfrac{5}{3}\times 6=10

P(X=0)=100e100!=0.00004539P(X=0)=10^0\dfrac{e^{-10}}{0!}=0.00004539

Next, P(X2)=1P(X<2)=1[P(X=0+P(X=1)]P(X\ge2)=1-P(X<2)=1-[P(X=0+P(X=1)]

=1(0.00004539+101e101!)=0.9995006=1-(0.00004539+10^1\dfrac{e^{-10}}{1!})=0.9995006


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS