1. A discrete random variable π has the following probability mass function
π(π=π₯)={2ππ₯ π₯=2,4,6
{π(π₯+2) π₯=8
{ 0 ππ‘βπππ€ππ π
where π is a constant
a. Show that π=1/34
b. Find the exact value of π(4<π₯β€8)
c. Find the exact value of π(2<π₯<4)
d. What is the expected value of the random variable π?
e. What is the variance of the random variable π?
f. Determine πππ(5β3π)
"P(X = x) = \\left\\{ {\\begin{matrix}\n{2kx,\\,\\,x = 2,4,6}\\\\\n{k(x + 2),\\,\\,x = 8}\\\\\n{0,\\,\\,otherwise}\n\\end{matrix}} \\right."
Find the values ββof the probabilities
"P(x = 2) = 2k \\cdot 2 = 4k"
"P(x = 4) = 2k \\cdot 4 = 8k"
"P(x = 6) = 2k \\cdot 6 = 12k"
"P(x = 8) = k \\cdot (8 + 2) = 10k"
a) We find the value of k from the condition
"\\sum {{P_i}} = 1"
Then
"4k + 8k + 12k + 10k = 1 \\Rightarrow 34k = 1 \\Rightarrow k = \\frac{1}{{34}}"
Q.E.D
b) construct a series of probability distributions
"\\begin{matrix}\nX&2&4&6&8\\\\\nP&{\\frac{4}{{34}}}&{\\frac{8}{{34}}}&{\\frac{{12}}{{34}}}&{\\frac{{10}}{{34}}}\n\\end{matrix}"
Let's find
"P(4 < x \\le 8) = P(6) + P(8) = \\frac{{12 + 10}}{{34}} = \\frac{{11}}{{17}}"
Answer: "P(4 < x \\le 8) = \\frac{{11}}{{17}}"
c) Let's find
"P(2 < X < 4) = 0" (since, by condition, "P(X = x) = 0" for all "x \\in \\left( {2;4} \\right)" )
Answer: "P(2 < X < 4) = 0"
d) Let's find he expected value:
"M(x) = \\sum {{x_i}} {p_i} = \\frac{{2 \\cdot 4 + 4 \\cdot 8 + 6 \\cdot 12 + 8 \\cdot 10}}{{34}} = \\frac{{96}}{{17}}"
Answer: "M(x) = \\frac{{96}}{{17}}"
e) Let's find the variance:
"Var(x) = M({x^2}) - {M^2}(x) = \\frac{{4 \\cdot 4 + 16 \\cdot 8 + 36 \\cdot 12 + 64 \\cdot 10}}{{34}} - {\\left( {\\frac{{96}}{{17}}} \\right)^2} = \\frac{{1120}}{{289}}"
Answer: "Var(x) = \\frac{{1120}}{{289}}"
f) Let's find
"Var(5 - 3x) = Var(5) + Var( - 3x) = 0 + {( - 3)^2}Var(x) = 9 \\cdot \\frac{{1120}}{{289}} = \\frac{{{\\rm{10080}}}}{{289}}"
Comments
Leave a comment