P ( X = x ) = { 2 k x , โ โ x = 2 , 4 , 6 k ( x + 2 ) , โ โ x = 8 0 , โ โ o t h e r w i s e P(X = x) = \left\{ {\begin{matrix}
{2kx,\,\,x = 2,4,6}\\
{k(x + 2),\,\,x = 8}\\
{0,\,\,otherwise}
\end{matrix}} \right. P ( X = x ) = โฉ โจ โง โ 2 k x , x = 2 , 4 , 6 k ( x + 2 ) , x = 8 0 , o t h er w i se โ
Find the values โโof the probabilities
P ( x = 2 ) = 2 k โ
2 = 4 k P(x = 2) = 2k \cdot 2 = 4k P ( x = 2 ) = 2 k โ
2 = 4 k
P ( x = 4 ) = 2 k โ
4 = 8 k P(x = 4) = 2k \cdot 4 = 8k P ( x = 4 ) = 2 k โ
4 = 8 k
P ( x = 6 ) = 2 k โ
6 = 12 k P(x = 6) = 2k \cdot 6 = 12k P ( x = 6 ) = 2 k โ
6 = 12 k
P ( x = 8 ) = k โ
( 8 + 2 ) = 10 k P(x = 8) = k \cdot (8 + 2) = 10k P ( x = 8 ) = k โ
( 8 + 2 ) = 10 k
a) We find the value of k from the condition
โ P i = 1 \sum {{P_i}} = 1 โ P i โ = 1
Then
4 k + 8 k + 12 k + 10 k = 1 โ 34 k = 1 โ k = 1 34 4k + 8k + 12k + 10k = 1 \Rightarrow 34k = 1 \Rightarrow k = \frac{1}{{34}} 4 k + 8 k + 12 k + 10 k = 1 โ 34 k = 1 โ k = 34 1 โ
Q.E.D
b) construct a series of probability distributions
X 2 4 6 8 P 4 34 8 34 12 34 10 34 \begin{matrix}
X&2&4&6&8\\
P&{\frac{4}{{34}}}&{\frac{8}{{34}}}&{\frac{{12}}{{34}}}&{\frac{{10}}{{34}}}
\end{matrix} X P โ 2 34 4 โ โ 4 34 8 โ โ 6 34 12 โ โ 8 34 10 โ โ
Let's find
P ( 4 < x โค 8 ) = P ( 6 ) + P ( 8 ) = 12 + 10 34 = 11 17 P(4 < x \le 8) = P(6) + P(8) = \frac{{12 + 10}}{{34}} = \frac{{11}}{{17}} P ( 4 < x โค 8 ) = P ( 6 ) + P ( 8 ) = 34 12 + 10 โ = 17 11 โ
Answer: P ( 4 < x โค 8 ) = 11 17 P(4 < x \le 8) = \frac{{11}}{{17}} P ( 4 < x โค 8 ) = 17 11 โ
c) Let's find
P ( 2 < X < 4 ) = 0 P(2 < X < 4) = 0 P ( 2 < X < 4 ) = 0 (since, by condition, P ( X = x ) = 0 P(X = x) = 0 P ( X = x ) = 0 for all x โ ( 2 ; 4 ) x \in \left( {2;4} \right) x โ ( 2 ; 4 ) )
Answer: P ( 2 < X < 4 ) = 0 P(2 < X < 4) = 0 P ( 2 < X < 4 ) = 0
d) Let's find he expected value:
M ( x ) = โ x i p i = 2 โ
4 + 4 โ
8 + 6 โ
12 + 8 โ
10 34 = 96 17 M(x) = \sum {{x_i}} {p_i} = \frac{{2 \cdot 4 + 4 \cdot 8 + 6 \cdot 12 + 8 \cdot 10}}{{34}} = \frac{{96}}{{17}} M ( x ) = โ x i โ p i โ = 34 2 โ
4 + 4 โ
8 + 6 โ
12 + 8 โ
10 โ = 17 96 โ
Answer: M ( x ) = 96 17 M(x) = \frac{{96}}{{17}} M ( x ) = 17 96 โ
e) Let's find the variance:
V a r ( x ) = M ( x 2 ) โ M 2 ( x ) = 4 โ
4 + 16 โ
8 + 36 โ
12 + 64 โ
10 34 โ ( 96 17 ) 2 = 1120 289 Var(x) = M({x^2}) - {M^2}(x) = \frac{{4 \cdot 4 + 16 \cdot 8 + 36 \cdot 12 + 64 \cdot 10}}{{34}} - {\left( {\frac{{96}}{{17}}} \right)^2} = \frac{{1120}}{{289}} Va r ( x ) = M ( x 2 ) โ M 2 ( x ) = 34 4 โ
4 + 16 โ
8 + 36 โ
12 + 64 โ
10 โ โ ( 17 96 โ ) 2 = 289 1120 โ
Answer: V a r ( x ) = 1120 289 Var(x) = \frac{{1120}}{{289}} Va r ( x ) = 289 1120 โ
f) Let's find
V a r ( 5 โ 3 x ) = V a r ( 5 ) + V a r ( โ 3 x ) = 0 + ( โ 3 ) 2 V a r ( x ) = 9 โ
1120 289 = 10080 289 Var(5 - 3x) = Var(5) + Var( - 3x) = 0 + {( - 3)^2}Var(x) = 9 \cdot \frac{{1120}}{{289}} = \frac{{{\rm{10080}}}}{{289}} Va r ( 5 โ 3 x ) = Va r ( 5 ) + Va r ( โ 3 x ) = 0 + ( โ 3 ) 2 Va r ( x ) = 9 โ
289 1120 โ = 289 10080 โ
Comments