Customers arrive at a checkout counter in a department store according to a Poison distribution of an average of seven per hour.During a given hour,what are the probabilities that
(a).no more than three customers arrive?
(b).at least two customers arrive?
(c).exactly four customers arrive?
Given, "\\lambda=7"
Let X denote the number of customers arrive.
(i) "P(X\\le 3)=P(X=1)+P(X=2)+P(X=3)+P(X=4)"
"=\\dfrac{e^{-\\lambda}\\lambda^0}{0!}+\\dfrac{e^{-\\lambda}\\lambda^1}{1!}+\\dfrac{e^{-\\lambda}\\lambda^2}{2!}+\\dfrac{e^{-\\lambda}\\lambda^3}{3!}"
"=\\dfrac{e^{-7}7^0}{0!}+\\dfrac{e^{-7}7^1}{1!}+\\dfrac{e^{-7}7^2}{2!}+\\dfrac{e^{-7}7^3}{3!}"
"=0.000911+0.00638+0.0223+0.05212=0.08172"
(ii) "P(X\\ge 2)=1-P(X<2)"
"=1-(P(X=0)+P(X=1))"
"=1-(\\dfrac{e^{-\\lambda}.\\lambda^0}{0!}+\\dfrac{e^{-\\lambda}\\lambda^1}{1!})"
"=1-(\\dfrac{e^{-7}7^0}{0!}+\\dfrac{e^{-7}7^1}{1!})"
"=1-(0.000911+0.0638)=0.9927"
(iii) "P(X=4)=\\dfrac{e^{-\\lambda}\\lambda^4}{4!}"
"=\\dfrac{e^{-7}7^4}{24}"
"=0.09122"
Comments
Leave a comment