Given that the random "W" is binomial distribution with "n" trials and success probability "p" in each trial and "P(W=w)=h(w)",show that
(a)."h(w)\/h(w-1)=p(n-w+1)\/(1-p)w,w>0"
(b)."E[W(W-1)]=n(n-1)p"2
(c)."E(1\/W+1)=1-(1-p)""n+1" /(n+1)p
Solution:
"P(W=w)=h(w)=^nC_wp^w(1-p)^{n-w}"
(a) "h(w-1)=^nC_{w-1}p^{w-1}(1-p)^{n-w+1}"
Now, "\\dfrac{h(w)}{h(w-1)}=\\dfrac{^nC_wp^w(1-p)^{n-w}}{^nC_{w-1}p^{w-1}(1-p)^{n-w+1}}"
"=\\dfrac{\\dfrac{n!}{w!(n-w)!}p}{\\dfrac{n!}{(w-1)!(n-w+1)}(1-p)}"
"=\\dfrac{(w-1)!(n-w+1)!p}{(w!)(n-w)!(1-p)}=\\dfrac{(w-1)!(n-w+1)(n-w)!p}{w(w-1)!(n-w)!(1-p)}"
"=\\dfrac{(n-w+1)p}{w(1-p)}"
(b) "E[W(W-1)]=E[W^2-W]=E(W^2)-E(W)" ...(i)
Now, "E(W)=np, Var(W)=E(W^2)-[E(W)]^2=np(1-p)"
So, "E(W^2)=[E(W)]^2+np(1-p)=n^2p^2+np(1-p)"
Putting these values in (i)
"E[W(W-1)]=E(W^2)-E(W)=n^2p^2+np(1-p)-np"
"=n^2p^2+np-np^2-np\n\\\\=n^2p^2-np^2\n\\\\=np^2(n-1)=n(n-1)p^2"
(c) "E[\\dfrac1{W+1}]=\\Sigma(\\dfrac1{w+1})P(W=w)"
"=\\Sigma_{w=0}^n(\\dfrac1{w+1})\\times ^nC_wp^w(1-p)^{n-w}"
"=\\dfrac{1}{p(n+1)}\\Sigma_{w=0}^n .^{n+1}C_{w+1}.p^{w-1}(1-p)^{n-w}"
"=\\dfrac{1}{p(n+1)}.(1-(1-p)^{n+1})"
Comments
Leave a comment