Let the pdf of X be given by
f(x) = 0.25 exp((0.25x), x > 0
Show that E(X) = 4 and V ar(X) = 16
E(X)="\\int xf(x)dx"
="\\int _0^\\infin 0.25e^{0.25x}.x dx"
="\\int _0^\\infin 0.25xe^{0.25x} dx"
apply integration by parts
"=0.25\\left(4e^{0.25x}x-\\int \\:4e^{0.25x}dx\\right)"
"=0.25\\left(4e^{0.25x}x-16e^{0.25x}\\right)]_0^\\infin"
"=0.25((0-0)-(0-16))"
=4
Var(X)
"Var(X)=E(X^2)-(E(X))^2"
"E(X^2)=\\int x^2f(x)dx"
"=\\int _0^\\infin 0.25e^{0.25x}.x^2 dx"
"=\\int _0^\\infin 0.25x^2e^{0.25x} dx"
apply integration by parts
"=0.25\\left(4e^{0.25x}x^2-\\int \\:8e^{0.25x}xdx\\right)"
"=0.25\\left(4e^{0.25x}x^2-8\\left(4e^{0.25x}x-16e^{0.25x}\\right)\\right)]_0^\\infin"
=0.25((0-0)-(0-8(0-16)))
=0.25*128
=32
"Var(x)=32-4^2"
=16
Comments
Leave a comment