E(X)=∫0∞x(0.25e−0.25x)dx
∫0.25xe−0.25xdx
∫udv=uv−∫vdu u=0.25x,du=0.25dx
v=−4e−0.25x
∫0.25xe−0.25xdx=−xe−0.25x+∫e−0.25xdx
=−xe−0.25x−4e−0.25x+C
E(X)=t→∞lim∫0tx(0.25e−0.25x)dx
=t→∞lim[−xe−0.25x−4e−0.25x]t0=4
∫0.25x2e−0.25xdx
∫udv=uv−∫vdu u=0.25x2,du=0.5xdx
v=−4e−0.25x
∫0.25x2e−0.25xdx=−x2e−0.25x+2∫xe−0.25xdx
=−x2e−0.25x−8xe−0.25x−32e−0.25x+C
E(X2)=t→∞lim∫0tx2(0.25e−0.25x)dx
=t→∞lim[−x2e−0.25x−8xe−0.25x−32e−0.25x]t0
=32
Var(X)=E(X2)−(E(X))2
=32−(4)2=16
Comments