. Let the probability distribution function of X be given by f(x) = 0.25 exp(−0.25x), x > 0 Show that E(X) = 4 and V ar(X) = 16
"u=0.25x, du=0.25dx"
"v=-4e^{-0.25x}"
"=-xe^{-0.25x}-4e^{-0.25x}+C"
"E(X)=\\lim\\limits_{t\\to \\infin}\\displaystyle\\int_{0}^{t}x(0.25e^{-0.25x})dx"
"=\\lim\\limits_{t\\to \\infin}[-xe^{-0.25x}-4e^{-0.25x}]\\begin{matrix}\n t \\\\\n 0\n\\end{matrix}=4"
"u=0.25x^2, du=0.5xdx"
"v=-4e^{-0.25x}"
"=-x^2e^{-0.25x}-8xe^{-0.25x}-32e^{-0.25x}+C"
"=\\lim\\limits_{t\\to \\infin}[-x^2e^{-0.25x}-8xe^{-0.25x}-32e^{-0.25x}]\\begin{matrix}\n t \\\\\n 0\n\\end{matrix}"
"=32"
Comments
Leave a comment