Question #185254

. Let the probability distribution function of X be given by f(x) = 0.25 exp(−0.25x), x > 0 Show that E(X) = 4 and V ar(X) = 16


1
Expert's answer
2021-05-07T09:45:33-0400
E(X)=0x(0.25e0.25x)dxE(X)=\displaystyle\int_{0}^{\infin}x(0.25e^{-0.25x})dx


0.25xe0.25xdx\int0.25xe^{-0.25x}dx


udv=uvvdu\int udv=uv-\int vdu

u=0.25x,du=0.25dxu=0.25x, du=0.25dx


v=4e0.25xv=-4e^{-0.25x}



0.25xe0.25xdx=xe0.25x+e0.25xdx\int0.25xe^{-0.25x}dx=-xe^{-0.25x}+\int e^{-0.25x}dx

=xe0.25x4e0.25x+C=-xe^{-0.25x}-4e^{-0.25x}+C

E(X)=limt0tx(0.25e0.25x)dxE(X)=\lim\limits_{t\to \infin}\displaystyle\int_{0}^{t}x(0.25e^{-0.25x})dx

=limt[xe0.25x4e0.25x]t0=4=\lim\limits_{t\to \infin}[-xe^{-0.25x}-4e^{-0.25x}]\begin{matrix} t \\ 0 \end{matrix}=4



0.25x2e0.25xdx\int0.25x^2e^{-0.25x}dx


udv=uvvdu\int udv=uv-\int vdu

u=0.25x2,du=0.5xdxu=0.25x^2, du=0.5xdx


v=4e0.25xv=-4e^{-0.25x}



0.25x2e0.25xdx=x2e0.25x+2xe0.25xdx\int0.25x^2e^{-0.25x}dx=-x^2e^{-0.25x}+2\int xe^{-0.25x}dx

=x2e0.25x8xe0.25x32e0.25x+C=-x^2e^{-0.25x}-8xe^{-0.25x}-32e^{-0.25x}+C


E(X2)=limt0tx2(0.25e0.25x)dxE(X^2)=\lim\limits_{t\to \infin}\displaystyle\int_{0}^{t}x^2(0.25e^{-0.25x})dx

=limt[x2e0.25x8xe0.25x32e0.25x]t0=\lim\limits_{t\to \infin}[-x^2e^{-0.25x}-8xe^{-0.25x}-32e^{-0.25x}]\begin{matrix} t \\ 0 \end{matrix}

=32=32


Var(X)=E(X2)(E(X))2Var(X)=E(X^2)-(E(X))^2


=32(4)2=16=32-(4)^2=16



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS