1-Let n X1, X2 ....Xn be random sample of size n from a distribution with probability
density function f(x,q)=qxq-1
0, else where.
Obtain a maximum likelyhood
estimator of q.
2- Let , X1, X2 Xn be independently and identically distributed b(1, p) random
variables. Obtain a confidence internal for p using Chebychev’s inequality
"f(x,q)=qx^{q-1}"
Taking log on both sides-
"log f(x,q)=logqx^{q-1}\\\\logf(x,q)=logq+(q-1)logx"
Log liklihood function is given by-
"L(X_1,X_2,X_3,...,X_n)=logf(x,q)=logq+(q-1)log x"
The maximum liklihood estimator of q-
"\\phi_{ML}=\\phi_{ML}(X_1,X_2,.....,X_n)"
2.Confidence interval by chebychev,s inequality is-
"P(|\\dfrac{1-p}{n}|)<\\dfrac{\\sigma}{E^2}"
"P(|(X-E[X])|\\ge k\\sigma)\\le \\dfrac{1}{k^2}"
Comments
Leave a comment