II. Find the expected value, variance, and standard deviation of the following discrete
probability distributions. (3 items x 15 points)
1.
T -3 5 7
P(T) 0.27 0.4 0.33
2.
X 0 1 2 3 4
P(x=X) 0.21 0.44 0.06 0.11 0.18
3.
Y 27 30 14 43
P(Y=y) 0.3 0.4 0.15 0.15
1.
"\\begin{array}{|c|c|c|c|}\\hline T& -3& 5& 7\\\\ \\hline P(T=t)& 0.27& 0.4& 0.33\\\\ \\hline\\end{array}"
Check the sum of probabilities
"0.27+ 0.4+ 0.33=1"
The expected value is
"\\bold{E}[T]= -3\\cdot0.27+ 5\\cdot0.4+ 7\\cdot0.33 =3.5"
The variance is
"\\bold{Var}[T]=\\bold{E}[T^2]-\\bold{E}^2[T]=" "\\bigg((-3)^2\\cdot0.27+ 5^2\\cdot0.4+ 7^2\\cdot0.33\\bigg)-(3.5)^2 =" "16.35"
The standard deviation is
"\\sigma[T]=\\sqrt{\\bold{Var}[T]}=\\sqrt{16.35}\\approx4.04"
2.
"\\begin{array}{|c|c|c|c|c|c|}\\hline X &0& 1& 2& 3& 4 \\\\ \\hline P(X=x) &0.21& 0.44& 0.06& 0.11& 0.18\\\\ \\hline\\end{array}"
Check the sum of probabilities
"0.21+ 0.44 +0.06+ 0.11+ 0.18=1"
The expected value is
"\\bold{E}[X]=" "0\\cdot0.21+1\\cdot0.44+2\\cdot0.06+3\\cdot0.11+4\\cdot0.18=" "1.61"
The variance is
"\\bold{Var}[X]=" "(0^2\\cdot0.21+1^2\\cdot0.44+2^2\\cdot0.06+3^2\\cdot0.11+4^2\\cdot0.18)-(1.61)^2\\approx1.96"
The standard deviation is
"\\sigma[X]=\\sqrt{1.96}\\approx1.40"
3.
"\\begin{array}{|c|c|c|c|c|c|}\\hline Y& 27& 30& 14& 43 \\\\ \\hline P(Y=y)& 0.3& 0.4& 0.15& 0.15\\\\ \\hline\\end{array}"
Check the sum of probabilities
"0.3 +0.4+ 0.15+ 0.15=1"
The expected value is
"\\bold{E}[Y]=27\\cdot0.3+ 30\\cdot0.4 + 14\\cdot0.15 + 43\\cdot0.15=" "28.65"
The variance is
"\\bold{Var}[Y]=" "(27^2\\cdot0.3+ 30^2\\cdot0.4 + 14^2\\cdot0.15 + 43^2\\cdot0.15)-(28.65)^2\\approx64.63"
The standard deviation is
"\\sigma[Y]=\\sqrt{64.63}\\approx8.04"
Comments
Leave a comment