Question #184177

Suppose x is a normally distributed random variable with μ=48 and σ=5. Find a value x0 of the random variable x that satisfies the following equations or statements.

a.​ 10% of the values of x are less than x0.

b.​ 1% of the values of x are greater than x0.


1
Expert's answer
2021-05-07T08:53:26-0400

μ=48\mu=48

σ=5\sigma=5

Use the distribution function of the standard normal distribution

Φ(x)=12πxet22dt\displaystyle\Phi(x)=\dfrac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^x e^{-\frac{t^2}{2}}dt

Note that

Φ()=0\Phi(-\infty)=0

Φ(+)=1\Phi(+\infty)=1


a. P(X<x0)=0.1P(X<x_0)=0.1


P(<X<x0)=0.1P(-\infty<X<x_0)=0.1

Φ(x0μσ)Φ()=0.1\Phi\left(\dfrac{x_0-\mu}{\sigma}\right)-\Phi(-\infty)=0.1


Φ(x0485)0=0.1\Phi\left(\dfrac{x_0-48}{5}\right)-0=0.1


Φ(x0485)=0.1\Phi\left(\dfrac{x_0-48}{5}\right)=0.1


x0485=Φ1(0.1)\dfrac{x_0-48}{5}=\Phi^{-1}(0.1)


x048=5Φ1(0.1)x_0-48=5\cdot \Phi^{-1}(0.1)


x0=5Φ1(0.1)+48x_0=5\cdot \Phi^{-1}(0.1)+48


x05(1.28)+48=6.41+48=41.59x_0\approx5\cdot (-1.28)+48=-6.41+48=41.59



b. P(X>x0)=0.01P(X>x_0)=0.01


P(x0<X<+)=0.01P(x_0<X<+\infty)=0.01


Φ(+)Φ(x0μσ)=0.01\Phi(+\infty)-\Phi\left(\dfrac{x_0-\mu}{\sigma}\right)=0.01


1Φ(x0485)=0.011-\Phi\left(\dfrac{x_0-48}{5}\right)=0.01


Φ(x0485)=0.011-\Phi\left(\dfrac{x_0-48}{5}\right)=0.01-1


Φ(x0485)=10.01\Phi\left(\dfrac{x_0-48}{5}\right)=1-0.01


Φ(x0485)=0.99\Phi\left(\dfrac{x_0-48}{5}\right)=0.99


x0485=Φ1(0.99)\dfrac{x_0-48}{5}=\Phi^{-1}(0.99)


x048=5Φ1(0.99)x_0-48=5\cdot\Phi^{-1}(0.99)


x0=5Φ1(0.99)+48x_0=5\cdot\Phi^{-1}(0.99)+48


x052.33+48=11.63+48=59.63x_0\approx5\cdot2.33+48=11.63+48=59.63



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS