Suppose x is a normally distributed random variable with μ=48 and σ=5. Find a value x0 of the random variable x that satisfies the following equations or statements.
a. 10% of the values of x are less than x0.
b. 1% of the values of x are greater than x0.
"\\mu=48"
"\\sigma=5"
Use the distribution function of the standard normal distribution
"\\displaystyle\\Phi(x)=\\dfrac{1}{\\sqrt{2\\pi}}\\int\\limits_{-\\infty}^x e^{-\\frac{t^2}{2}}dt"
Note that
"\\Phi(-\\infty)=0"
"\\Phi(+\\infty)=1"
a. "P(X<x_0)=0.1"
"P(-\\infty<X<x_0)=0.1"
"\\Phi\\left(\\dfrac{x_0-\\mu}{\\sigma}\\right)-\\Phi(-\\infty)=0.1"
"\\Phi\\left(\\dfrac{x_0-48}{5}\\right)-0=0.1"
"\\Phi\\left(\\dfrac{x_0-48}{5}\\right)=0.1"
"\\dfrac{x_0-48}{5}=\\Phi^{-1}(0.1)"
"x_0-48=5\\cdot \\Phi^{-1}(0.1)"
"x_0=5\\cdot \\Phi^{-1}(0.1)+48"
"x_0\\approx5\\cdot (-1.28)+48=-6.41+48=41.59"
b. "P(X>x_0)=0.01"
"P(x_0<X<+\\infty)=0.01"
"\\Phi(+\\infty)-\\Phi\\left(\\dfrac{x_0-\\mu}{\\sigma}\\right)=0.01"
"1-\\Phi\\left(\\dfrac{x_0-48}{5}\\right)=0.01"
"-\\Phi\\left(\\dfrac{x_0-48}{5}\\right)=0.01-1"
"\\Phi\\left(\\dfrac{x_0-48}{5}\\right)=1-0.01"
"\\Phi\\left(\\dfrac{x_0-48}{5}\\right)=0.99"
"\\dfrac{x_0-48}{5}=\\Phi^{-1}(0.99)"
"x_0-48=5\\cdot\\Phi^{-1}(0.99)"
"x_0=5\\cdot\\Phi^{-1}(0.99)+48"
"x_0\\approx5\\cdot2.33+48=11.63+48=59.63"
Comments
Leave a comment