Question #159268

1)     In a frequency distribution of 100 families given below the number of families corresponding to expenditure groups 20-40 and 60-80 are missing from the table. However, the median is known to be 50.

 Expenditure group

0-20

20-40

40-60

60-80

80-100

No. of families

14

f2

27

f4

15

a)         Find the missing frequencies.

b)        Find mean, mode, variance, standard deviation, range, mean deviation for mean and median


1
Expert's answer
2021-01-29T14:06:37-0500

a) Let f2=f_2= the number of families in class 2040,20-40, f4=f_4= the number of families in class

6080.60-80. Then


14+f2+27+f4+15=10014+f_2+27+f_4+15=100

f2+f4=44f_2+f_4=44

Estimated Median =L+n/2BG×wL+\dfrac{n/2-B}{G}\times w  

where:

L is the lower class boundary of the group containing the median

n is the total number of values

B is the cumulative frequency of the groups before the median group

G is the frequency of the median group

w is the group width

Given n=100,w=20,Median=M=50n=100, w=20, Median=M=50

Then L=20L=20 or L=40L=40


Take L=20L=20


20+100/214f2×20=5020+\dfrac{100/2-14}{f_2}\times 20=50

f2=24f_2=24

But 20+24=44<100/2.20+24=44<100/2. We have a contradiction.


Take L=40L=40


40+100/2(14+f2)27×20=5040+\dfrac{100/2-(14+f_2)}{27}\times 20=50

36f2=13.536-f_2=13.5

f2=22.5f_2=22.5

Take f2=23.f4=21f_2=23. f_4=21


b)


10(14)+30(23)+50(27)+70(21)+90(15)=500010(14)+30(23)+50(27)+70(21)+90(15)=5000


mean=5000100mean=\dfrac{5000}{100}

mean=xˉ=50mean=\bar{x}=50

Find Mode Class

Maximum frequency is 27.The mode class is 40-60.

L=40L=40

f3=27f_3=27

f2=23f_2=23

f4=21f_4=21

w=20w=20


mode=L+f3f22f3f2f4×wmode=L+\dfrac{f_3-f_2}{2f_3-f_2-f_4}\times w

=40+27232(27)2321×20=48=40+\dfrac{27-23}{2(27)-23-21}\times 20=48

102(14)+302(23)+502(27)+702(21)+902(15)=10^2(14)+30^2(23)+50^2(27)+70^2(21)+90^2(15)=

=314000=314000

314000(5000)2100=64000314000-\dfrac{(5000)^2}{100}=64000

Var(X)=s2=640001001=646.4646Var(X)=s^2=\dfrac{64000}{100-1}=646.4646

s=s2=6400099=25.4257s=\sqrt{s^2}=\sqrt{\dfrac{64000}{99}}=25.4257

Mean deviation of Mean


δxˉ=ixixˉfi100\delta\bar{x}=\dfrac{\sum_i|x_i-\bar{x}|f_i}{100}

ixixˉfi\sum_i|x_i-\bar{x}|f_i=40(14)+20(23)+0(27)+20(21)+40(15)=2040=40(14)+20(23)+0(27)+20(21)+40(15)=2040

δxˉ=ixixˉfi100=2040100=20.4\delta\bar{x}=\dfrac{\sum_i|x_i-\bar{x}|f_i}{100}=\dfrac{2040}{100}=20.4

Mean deviation of Median


δM=ixiMfi100\delta M=\dfrac{\sum_i|x_i-M|f_i}{100}

Since xˉ=M\bar{x}=M

δM=δxˉ=20.4\delta M=\delta\bar{x}=20.4


Range=9010=80Range=90-10=80


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS