Answer to Question #154652 in Statistics and Probability for fatih

Question #154652

A box contains ten light bulbs of which four are defective. A bulb is selected from the box and tested. If it is defective, another bulb is selected and tested, until a non-defective bulb is chosen. Let the random variable X be the number of bulbs chosen. a) Write sample space for this random experiment? b) Find probability mass Function of X? c) Find CDF of X?


1
Expert's answer
2021-01-11T18:39:18-0500

a) Sample space: S={1,2,3,4,5}S=\{1,2,3,4,5\}

X1X\geq 1 , because we must choose at least one bulb;

We can select at most 5 bulbs, because we have only 4 defective bulbs and the last bulb chosen is non-defective.

b) If we selected nn defective bulbs, then the probability that the next one is defective is No. of defective bulbs leftTotal no. of bulbs left=4n10n\frac{\text{No. of defective bulbs left}}{\text{Total no. of bulbs left}}= \frac{4-n}{10-n} .

If we selected nn defective bulbs, then the probability that the next one is non-defective is No. of non-defective bulbs leftTotal no. of bulbs left=610n\frac{\text{No. of non-defective bulbs left}}{\text{Total no. of bulbs left}}= \frac{6}{10-n} .

Now we can find the probability mass Function of X:


P(X=1)=610=35P(X=1)=\frac{6}{10}=\frac{3}{5}


P(X=2)=41069=415P(X=2)=\frac{4}{10}\cdot \frac{6}{9}=\frac{4}{15}


P(X=3)=4103968=110P(X=3)=\frac{4}{10}\cdot \frac{3}{9}\cdot \frac{6}{8}=\frac{1}{10}


P(X=4)=410392867=135P(X=4)=\frac{4}{10}\cdot \frac{3}{9}\cdot \frac{2}{8}\cdot \frac{6}{7}=\frac{1}{35}


P(X=5)=41039281766=1210P(X=5)=\frac{4}{10}\cdot\frac{3}{9}\cdot \frac{2}{8}\cdot \frac{1}{7}\cdot \frac{6}{6}=\frac{1}{210}


c) F(1)=P(X1)=35F(1)=P(X\leq1)=\frac{3}{5}


F(2)=P(X2)=P(X=1)+P(X=2)=35+415=1315F(2)=P(X\leq 2)=P(X=1)+P(X=2)=\frac{3}{5}+\frac{4}{15}=\frac{13}{15}


F(3)=P(X3)=P(X=1)+P(X=2)+P(X=3)=35+415+110=2930F(3)=P(X\leq 3)=P(X=1)+P(X=2)+P(X=3)=\frac{3}{5}+\frac{4}{15}+\frac{1}{10}=\frac{29}{30}


F(4)=P(X4)=P(X=1)+P(X=2)+P(X=3)+P(X=4)=35+415+110+135=209210F(4)=P(X\leq 4)=P(X=1)+P(X=2)+P(X=3)+P(X=4)=\frac{3}{5}+\frac{4}{15}+\frac{1}{10}+\frac{1}{35}=\frac{209}{210}


F(5)=P(X5)=P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)=35+415+110+135+1210=1F(5)=P(X\leq 5)=P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)=\frac{3}{5}+\frac{4}{15}+\frac{1}{10}+\frac{1}{35}+\frac{1}{210}=1



Answers:

a) S={1,2,3,4,5}S=\{1,2,3,4,5\}

b) X12345f(x)354151101351210\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} X & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & \tfrac{3}{5} & \tfrac{4}{15} & \tfrac{1}{10} & \tfrac{1}{35} & \tfrac{1}{210} \\ \end{array}

c) X12345F(x)35131529302092101\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} X & 1 & 2 & 3 & 4 & 5 \\ \hline F(x) & \tfrac{3}{5} & \tfrac{13}{15} & \tfrac{29}{30} & \tfrac{209}{210} & 1 \\ \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment