A box contains ten light bulbs of which four are defective. A bulb is selected from the box and tested. If it is defective, another bulb is selected and tested, until a non-defective bulb is chosen. Let the random variable X be the number of bulbs chosen. a) Write sample space for this random experiment? b) Find probability mass Function of X? c) Find CDF of X?
a) Sample space: "S=\\{1,2,3,4,5\\}"
"X\\geq 1" , because we must choose at least one bulb;
We can select at most 5 bulbs, because we have only 4 defective bulbs and the last bulb chosen is non-defective.
b) If we selected "n" defective bulbs, then the probability that the next one is defective is "\\frac{\\text{No. of defective bulbs left}}{\\text{Total no. of bulbs left}}=\n\\frac{4-n}{10-n}" .
If we selected "n" defective bulbs, then the probability that the next one is non-defective is "\\frac{\\text{No. of non-defective bulbs left}}{\\text{Total no. of bulbs left}}=\n\\frac{6}{10-n}" .
Now we can find the probability mass Function of X:
"P(X=1)=\\frac{6}{10}=\\frac{3}{5}"
"P(X=2)=\\frac{4}{10}\\cdot \\frac{6}{9}=\\frac{4}{15}"
"P(X=3)=\\frac{4}{10}\\cdot \\frac{3}{9}\\cdot \\frac{6}{8}=\\frac{1}{10}"
"P(X=4)=\\frac{4}{10}\\cdot \\frac{3}{9}\\cdot \\frac{2}{8}\\cdot \\frac{6}{7}=\\frac{1}{35}"
"P(X=5)=\\frac{4}{10}\\cdot\\frac{3}{9}\\cdot \\frac{2}{8}\\cdot \\frac{1}{7}\\cdot \\frac{6}{6}=\\frac{1}{210}"
c) "F(1)=P(X\\leq1)=\\frac{3}{5}"
"F(2)=P(X\\leq 2)=P(X=1)+P(X=2)=\\frac{3}{5}+\\frac{4}{15}=\\frac{13}{15}"
"F(3)=P(X\\leq 3)=P(X=1)+P(X=2)+P(X=3)=\\frac{3}{5}+\\frac{4}{15}+\\frac{1}{10}=\\frac{29}{30}"
"F(4)=P(X\\leq 4)=P(X=1)+P(X=2)+P(X=3)+P(X=4)=\\frac{3}{5}+\\frac{4}{15}+\\frac{1}{10}+\\frac{1}{35}=\\frac{209}{210}"
"F(5)=P(X\\leq 5)=P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)=\\frac{3}{5}+\\frac{4}{15}+\\frac{1}{10}+\\frac{1}{35}+\\frac{1}{210}=1"
Answers:
a) "S=\\{1,2,3,4,5\\}"
b) "\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n X & 1 & 2 & 3 & 4 & 5 \\\\ \\hline\n f(x) & \\tfrac{3}{5} & \\tfrac{4}{15} & \\tfrac{1}{10} & \\tfrac{1}{35} & \\tfrac{1}{210} \\\\\n \n\\end{array}"
c) "\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n X & 1 & 2 & 3 & 4 & 5 \\\\ \\hline\n F(x) & \\tfrac{3}{5} & \\tfrac{13}{15} & \\tfrac{29}{30} & \\tfrac{209}{210} & 1 \\\\\n \n\\end{array}"
Comments
Leave a comment