"Cov(Z,W)=E[ZW]-E[Z]E[W]=E[(X+Y)(X-Y)]-E[X+Y]E[X-Y]="
"=E[X^2-Y^2]-(E[X]+E[Y])(E[X]-E[Y])=E[X^2]-E[Y^2]-(E[X])^2+(E[Y])^2=Var(X)-Var(Y)=\\frac14-\\frac13\\cdot\\frac23=\\frac14-\\frac29=\\frac1{36};"
"Corr(Z,W)=\\frac{Cov(Z,W)}{\\sqrt{Var(X)Var(Y)}}=\\frac{\\frac{1}{36}}{\\sqrt{\\frac{1}{4}\\cdot\\frac{2}9}}=\\frac{1}{\\sqrt{2}\\sqrt{36}}=\\frac{\\sqrt{2}}{12}" .
Comments
Dear Yosef, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you very much
Leave a comment