Given that X is Bernoulli random variable with parameter \frac{1}{2}
That is, X ∼ Bernoulli ( 1 2 ) (\frac{1}{2}) ( 2 1 )
Then, E(X) = p
= 1 2 = \frac{1}{2} = 2 1
and V(X) = pq
= 1 2 × 1 2 = 1 4 = \frac{1}{2} \times \frac{1}{2} \\
= \frac{1}{4} = 2 1 × 2 1 = 4 1
We know that V ( X ) = E ( X 2 ) − ( E ( X ) ) 2 V(X) = E(X^2) -(E(X))^2 V ( X ) = E ( X 2 ) − ( E ( X ) ) 2
= > 1 4 = E ( X ) 2 − ( 1 2 ) 2 = > E ( X ) 2 = 1 4 + 1 4 => \frac{1}{4} = E(X)^2-(\frac{1}{2})^2 \\
=> E(X)^2 = \frac{1}{4}+\frac{1}{4} => 4 1 = E ( X ) 2 − ( 2 1 ) 2 => E ( X ) 2 = 4 1 + 4 1
= 1 2 = \frac{1}{2} = 2 1
Also, Y is a standard normal random variable.
That is, Y∼N(0,1) => E(Y) =0 and V(Y)=1
V ( Y ) = E ( Y 2 ) − ( E ( Y ) ) 2 = > 1 = E ( Y 2 ) − ( 0 ) 2 = > E ( Y 2 ) = 1 + 0 = 1 V(Y) = E(Y^2) - (E(Y))^2 \\
=> 1 = E(Y^2) - (0)^2 \\
=> E(Y^2) = 1+0 \\
=1 V ( Y ) = E ( Y 2 ) − ( E ( Y ) ) 2 => 1 = E ( Y 2 ) − ( 0 ) 2 => E ( Y 2 ) = 1 + 0 = 1
Given that X and Y are independent variables.
Now, given that Z=X+Y
Then,
E ( Z ) = E ( X ) + E ( Y ) = 1 2 + 0 = 1 2 V ( Z ) = V ( X ) + V ( Y ) + 2 C o v ( X , Y ) = V ( X ) + V ( Y ) + 2 ( 0 ) E(Z) = E(X)+E(Y) \\
= \frac{1}{2}+0 \\
= \frac{1}{2} \\
V(Z) = V(X)+V(Y)+2Cov(X,Y) \\
=V(X)+V(Y)+2(0) E ( Z ) = E ( X ) + E ( Y ) = 2 1 + 0 = 2 1 V ( Z ) = V ( X ) + V ( Y ) + 2 C o v ( X , Y ) = V ( X ) + V ( Y ) + 2 ( 0 )
since X and Y are independent, Cov (X,Y) = 0
= 1 4 + 1 = 5 4 = \frac{1}{4}+1 \\
= \frac{5}{4} = 4 1 + 1 = 4 5
Also,
W = X − Y = > E ( W ) = E ( X ) − E ( Y ) = 1 2 − 0 = 1 2 V ( W ) = V ( X ) + V ( Y ) − 2 C o v ( X , Y ) = V ( X ) + V ( Y ) − 2 ( 0 ) W=X-Y \\
=> E(W)=E(X)-E(Y) \\
= \frac{1}{2}-0 \\
= \frac{1}{2} \\
V(W) =V(X)+V(Y)-2Cov(X,Y) \\
= V(X)+V(Y)-2(0) W = X − Y => E ( W ) = E ( X ) − E ( Y ) = 2 1 − 0 = 2 1 V ( W ) = V ( X ) + V ( Y ) − 2 C o v ( X , Y ) = V ( X ) + V ( Y ) − 2 ( 0 )
since X and Y are independent,
C o v ( X , Y ) = 0 = 1 4 + 1 = 5 4 C o v ( Z , W ) = E ( Z W ) − E ( Z ) E ( W ) = E ( ( X + Y ) ( X − Y ) ) − E ( Z ) E ( W ) = E ( X 2 − Y 2 ) − 1 2 × 1 2 = E ( X 2 ) − E ( Y 2 ) − 1 4 = 1 2 − 1 − 1 4 = − 0.75 Cov (X,Y) = 0 \\
= \frac{1}{4}+1 \\
= \frac{5}{4} \\
Cov(Z,W)=E(ZW)-E(Z)E(W) \\
=E((X+Y)(X-Y))-E(Z)E(W) \\
= E(X^2-Y^2)-\frac{1}{2} \times \frac{1}{2} \\
=E(X^2)-E(Y^2) - \frac{1}{4} \\
= \frac{1}{2}-1- \frac{1}{4} \\
= -0.75 C o v ( X , Y ) = 0 = 4 1 + 1 = 4 5 C o v ( Z , W ) = E ( Z W ) − E ( Z ) E ( W ) = E (( X + Y ) ( X − Y )) − E ( Z ) E ( W ) = E ( X 2 − Y 2 ) − 2 1 × 2 1 = E ( X 2 ) − E ( Y 2 ) − 4 1 = 2 1 − 1 − 4 1 = − 0.75
C o r r ( Z , W ) = C o v ( Z , W ) V ( Z ) V ( W ) = − 0.75 5 4 5 4 = − 0.75 × 4 5 = − 0.60 Corr(Z,W) = \frac{Cov(Z,W)}{\sqrt{V(Z)}\sqrt{V(W)}} \\
=\frac{-0.75}{\sqrt{\frac{5}{4}}\sqrt{\frac{5}{4}}} \\
= \frac{-0.75 \times 4}{5} \\
= -0.60 C orr ( Z , W ) = V ( Z ) V ( W ) C o v ( Z , W ) = 4 5 4 5 − 0.75 = 5 − 0.75 × 4 = − 0.60
Comments
Dear Yosef, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you very much.