Question #151502
3.3.14 Let X and Y be independent, with X ∼ Bernoulli(1/2) and Y ∼ N(0, 1). Let
Z = X +Y and W = X −Y. Compute Var(Z), Var(W), Cov(Z, W), and Corr(Z, W)
1
Expert's answer
2020-12-21T17:52:56-0500

Given that X is Bernoulli random variable with parameter \frac{1}{2}

That is, X ∼ Bernoulli (12)(\frac{1}{2})

Then, E(X) = p

=12= \frac{1}{2}

and V(X) = pq

=12×12=14= \frac{1}{2} \times \frac{1}{2} \\ = \frac{1}{4}

We know that V(X)=E(X2)(E(X))2V(X) = E(X^2) -(E(X))^2

=>14=E(X)2(12)2=>E(X)2=14+14=> \frac{1}{4} = E(X)^2-(\frac{1}{2})^2 \\ => E(X)^2 = \frac{1}{4}+\frac{1}{4}

=12= \frac{1}{2}

Also, Y is a standard normal random variable.

That is, Y∼N(0,1) => E(Y) =0 and V(Y)=1

V(Y)=E(Y2)(E(Y))2=>1=E(Y2)(0)2=>E(Y2)=1+0=1V(Y) = E(Y^2) - (E(Y))^2 \\ => 1 = E(Y^2) - (0)^2 \\ => E(Y^2) = 1+0 \\ =1

Given that X and Y are independent variables.

Now, given that Z=X+Y

Then,

E(Z)=E(X)+E(Y)=12+0=12V(Z)=V(X)+V(Y)+2Cov(X,Y)=V(X)+V(Y)+2(0)E(Z) = E(X)+E(Y) \\ = \frac{1}{2}+0 \\ = \frac{1}{2} \\ V(Z) = V(X)+V(Y)+2Cov(X,Y) \\ =V(X)+V(Y)+2(0)

since X and Y are independent, Cov (X,Y) = 0

=14+1=54= \frac{1}{4}+1 \\ = \frac{5}{4}

Also,

W=XY=>E(W)=E(X)E(Y)=120=12V(W)=V(X)+V(Y)2Cov(X,Y)=V(X)+V(Y)2(0)W=X-Y \\ => E(W)=E(X)-E(Y) \\ = \frac{1}{2}-0 \\ = \frac{1}{2} \\ V(W) =V(X)+V(Y)-2Cov(X,Y) \\ = V(X)+V(Y)-2(0)

since X and Y are independent,

Cov(X,Y)=0=14+1=54Cov(Z,W)=E(ZW)E(Z)E(W)=E((X+Y)(XY))E(Z)E(W)=E(X2Y2)12×12=E(X2)E(Y2)14=12114=0.75Cov (X,Y) = 0 \\ = \frac{1}{4}+1 \\ = \frac{5}{4} \\ Cov(Z,W)=E(ZW)-E(Z)E(W) \\ =E((X+Y)(X-Y))-E(Z)E(W) \\ = E(X^2-Y^2)-\frac{1}{2} \times \frac{1}{2} \\ =E(X^2)-E(Y^2) - \frac{1}{4} \\ = \frac{1}{2}-1- \frac{1}{4} \\ = -0.75

Corr(Z,W)=Cov(Z,W)V(Z)V(W)=0.755454=0.75×45=0.60Corr(Z,W) = \frac{Cov(Z,W)}{\sqrt{V(Z)}\sqrt{V(W)}} \\ =\frac{-0.75}{\sqrt{\frac{5}{4}}\sqrt{\frac{5}{4}}} \\ = \frac{-0.75 \times 4}{5} \\ = -0.60


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
22.12.20, 21:29

Dear Yosef, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Yosef
22.12.20, 04:41

Thank you very much.

LATEST TUTORIALS
APPROVED BY CLIENTS