Question #151504
3.3.11 Suppose you roll two fair six-sided dice. Let X be the number showing on the
first die, and let Y be the sum of the numbers showing on the two dice. Compute E(X),
E(Y), E(XY), and Cov(X, Y).
1
Expert's answer
2020-12-17T18:54:30-0500

Let X be the number showing on the first die

Y be the sum of the numbers showing on the two dice

The random variable X takes values 1,2,3,4,5 and 6 with probability 1/6

The PMF of X can be written in the table form as follows


E(X)=XP(X=x)=1×16+2×16+3×16+4×16+5×16+6×16=0.16+0.33+0.5+0.66+0.83+1=3.48E(X)=3.48E(X) = \sum XP(X=x) \\ = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} \\ = 0.16 + 0.33 + 0.5 + 0.66 + 0.83 + 1 \\ = 3.48 \\ E(X) = 3.48

The random variable X takes values 2,3,4,5,6,7,8,9,10,11,12

The PMF of X can be written in the table form as follows


E(Y)=YP(Y=y)=2×136+3×236+4×336+5×436+6×536+7×636+8×536+9×436+10×336+11×236+12×136=136(2+6+12+20+30+42+40+36+30+22+12)=25236=7E(Y)=7E(Y) = \sum YP(Y=y) \\ = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 \times \frac{4}{36} + 6 \times \frac{5}{36} + 7 \times \frac{6}{36} + 8 \times \frac{5}{36} + 9 \times \frac{4}{36} + 10 \times \frac{3}{36} + 11 \times \frac{2}{36} + 12 \times \frac{1}{36} \\ = \frac{1}{36}(2+6+12+20+30+42+40+36+30+22+12) \\ = \frac{252}{36} \\ = 7 \\ E(Y) = 7

The joint PMF of X and Y as follows


E(XY)=XYP(X=x,Y=y)=(1×2×136)+(1×3×136)+(1×4×136)+.+(6×12×136)=136(2+3+4+5+6.+66+72)=98736=27.41667E(XY)=24.41667COV(XY)=E(XY)E(X)E(Y)=329123.48×7=3.0566Cov(XY)=3.0566E(XY) = \sum \sum XYP(X=x, Y=y) \\ = (1 \times 2 \times \frac{1}{36}) + (1 \times 3 \times \frac{1}{36}) + (1 \times 4 \times \frac{1}{36}) +….+ (6 \times 12 \times \frac{1}{36}) \\ = \frac{1}{36}(2+3+4+5+6….+66+72) \\ = \frac{987}{36} \\ = 27.41667 \\ E(XY) = 24.41667 \\ COV(XY)=E(XY)-E(X)E(Y) \\ =\frac{329}{12}-3.48 \times 7 \\ =3.0566 \\ Cov(XY)=3.0566


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
21.12.20, 00:01

Dear Yosef, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Yosef
19.12.20, 06:10

Thank you very much

LATEST TUTORIALS
APPROVED BY CLIENTS