Answer to Question #149680 in Statistics and Probability for Randal Rodriguez

Question #149680
The shelf life, in days, for bottles of a certain prescribed medicine is a random variable having the density function below. Find the probability that a bottle of this medicine will have a shell life of

f(x)= {20000/(x+100)^3, x>0,
.........0,(included on the bracket) elsewhere.

(a) at least 365 days. (Decimal form)
(b) at most 365 days. (Decimal form)
1
Expert's answer
2020-12-10T13:04:31-0500

a. Let X be the shelf life for a bottle of the medicine, i.e the random variable with the density function f.

P(x365)P(x\geq365) =x=365f(x)\space =\int^{\infin}_{x=365}f(x)


                     =x=36520000(x+100)3\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=\int^{\infin}_{x=365}\frac{20000}{(x+100)^3}


                     =(10000(x+100)2)365\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=(-\frac{10000}{(x+100)^2})\mid^{\infin}_{365}


                     =0.04624812117\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=0.04624812117


                     =0.0462\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=0.0462

b.


P(x365)=1P(x365)P(x\leq365)=1-P(x\geq365)


                     =1x=365f(x)\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=1-\int^{\infin}_{x=365}f(x)


                     =1x=36520000(x+100)3\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=1-\int^{\infin}_{x=365}\frac{20000}{(x+100)^3}


                     =1(10000(x+100)2)365\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=1-(-\frac{10000}{(x+100)^2})\mid^{\infin}_{365}


                     =110000(365+100)2\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=1-\frac{10000}{(365+100)^2}


                     =14008649\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=1-\frac{400}{8649}


                     =0.95375187883\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=0.95375187883


                     =0.9538\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=0.9538


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment