Solution
a).
i). P(X <150)
=ϕ(σx−μ)=ϕ(16150−134)=ϕ(1) =0.8413
ii). P(X >x) =0.1
P(X>x)=1−P(X≤x)=0.1P(X≤x)=0.9ϕ(16x−134)=0.9
16x−134=1.28x=1.28(16)+134 =154.5 minutes
b). P (Y<170)=0.14 and P(Y>200)=0.03
ϕ(σ170−μ)=0.14
σ170−μ=−1.08170−μ=−1.08σ ........(i)
P(Y>200)=1−P(Y≤200)=0.03
ϕ(σ200−μ)=1−0.03=0.97
σ200−μ=1.88200−μ=1.88σ ......(ii) Solve eq(i) and (ii) simultaneously.
Subtracting eq(i) from (ii) yields :
30=2.96σ∴σ≈10 minutesμ=200−1.88(10)∴μ≈181 minutes
Comments