Question #149651
(a) The time X minutes , taken by Fred Fast to install a satellite dish may be assumed to be a random variable with mean 134 and standard deviation 16.

i) Determine P(X<150) (3Marks)
ii) Determine to one dp the time exceeded by 10% of installations. (4Marks)

b) The time Y minutes taken by Sid Slow to install a satellite dish may also be assumed a normal random variable but with

P(Y<170)=0.14 and P(Y>200)=0.03

Determine to the nearest minute value for the mean and standard deviation of Y. (6Marks)

Please show all working thanks
1
Expert's answer
2020-12-10T10:12:02-0500

Solution

a).

i). P(X <150)


=ϕ(xμσ)=ϕ(15013416)=ϕ(1)= \phi({x- \mu \over \sigma}) = \phi ({150-134 \over 16})= \phi (1)

=0.8413=0.8413


ii). P(X >x) =0.1


P(X>x)=1P(Xx)=0.1P(X>x) =1-P(X \le x) =0.1P(Xx)=0.9P(X \le x) =0.9ϕ(x13416)=0.9\phi ({x-134 \over 16})=0.9

x13416=1.28{x-134 \over 16}=1.28x=1.28(16)+134x=1.28(16)+134

=154.5 minutes=154.5 \space minutes


b). P (Y<170)=0.14 and P(Y>200)=0.03


ϕ(170μσ)=0.14\phi ({170 - \mu \over \sigma}) =0.14

170μσ=1.08{170 - \mu \over \sigma} =-1.08170μ=1.08σ ........(i)170- \mu = - 1.08 \sigma \space........ (i)

P(Y>200)=1P(Y200)=0.03P(Y>200)=1-P(Y \le 200)=0.03

ϕ(200μσ)=10.03=0.97\phi ({200 - \mu \over \sigma}) =1-0.03=0.97

200μσ=1.88{200 - \mu \over \sigma} =1.88200μ=1.88σ ......(ii)200-\mu =1.88 \sigma \space...... (ii)

Solve eq(i) and (ii) simultaneously.

Subtracting eq(i) from (ii) yields :


30=2.96σ30=2.96 \sigmaσ10 minutes\therefore \sigma \approx10 \space minutesμ=2001.88(10)\mu =200-1.88(10)μ181 minutes\therefore \mu \approx 181 \space minutes


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS