Let X1 and X2 be two independent Binomial variate with parameters (n1,p1) and (n2,p2) respectively. Let Y=X1+X2. Then the MGF (moment generating function) of Y is
MY(t)=MX1(t)∗MX2(t)=(q1+p1et)n1∗(q2+p2et)n2
It is not MGF of Binomial distribution.
But it is MGF of Binomial distribution iif p1 = p2=p:
(q1+p1et)n1∗(q2+p2et)n2=(q+pet)n1∗(q+pet)n2=(q+pet)n1+n2
Now it is MGF of Binomial distribution with parameters (n1+n2, p)
Hence, condition is p1 = p2 then Y=X1+X2∼B(n1+n2, p)
.
Comments