Assume the normality of distribution
Let "X=" the number of candidates: "X\\sim N(\\mu, \\sigma^2)"
Then "Z=\\dfrac{X-\\mu}{\\sigma}\\sim N(0, 1)"
Given "\\mu=34.4, \\sigma=16.6,n=2000"
i)
"P(30\\leq X\\leq60)=P(X\\leq60)-P(X<30)=""=P(Z\\leq\\dfrac{60-34.4}{16.6})-P(Z<\\dfrac{30-34.4}{16.6})"
"\\approx P(Z\\leq1.54219)-P(Z<-0.26506)"
"\\approx0.938486-0.395482\\approx0.543004"
"2000\\cdot0.543004=1086"
There are 1086 candidates between 30 and 60.
ii)
"\\approx (Z<-0.14458)\\approx0.442521"
"2000\\cdot0.442521=885"
There are 885 candidates less than 32.
iii)
"=1-P(Z\\leq\\dfrac{36-34.4}{16.6})"
"\\approx1-(Z<0.09639)\\approx1-0.538393\\approx0.461607"
"2000\\cdot0.461607=923"
There are 923 candidates greater than 36.
iv)
"P(36\\leq X\\leq39)=P(X\\leq39)-P(X<36)=""=P(Z\\leq\\dfrac{39-34.4}{16.6})-P(Z<\\dfrac{36-34.4}{16.6})"
"\\approx P(Z\\leq0.27711)-P(Z<0.09639)"
"\\approx0.609152-0.538393\\approx0.070759"
"2000\\cdot0.070759=142"
There are 142 candidates between 36 and 39.
Comments
Leave a comment