Assume the normality of distribution
Let X= the number of candidates: X∼N(μ,σ2)
Then Z=σX−μ∼N(0,1)
Given μ=34.4,σ=16.6,n=2000
i)
P(30≤X≤60)=P(X≤60)−P(X<30)=
=P(Z≤16.660−34.4)−P(Z<16.630−34.4)
≈P(Z≤1.54219)−P(Z<−0.26506)
≈0.938486−0.395482≈0.543004
2000⋅0.543004=1086
There are 1086 candidates between 30 and 60.
ii)
P(X<32)=P(Z<16.632−34.4)
≈(Z<−0.14458)≈0.442521 2000⋅0.442521=885
There are 885 candidates less than 32.
iii)
P(X>36)=1−P(X≤36)
=1−P(Z≤16.636−34.4)
≈1−(Z<0.09639)≈1−0.538393≈0.461607 2000⋅0.461607=923
There are 923 candidates greater than 36.
iv)
P(36≤X≤39)=P(X≤39)−P(X<36)=
=P(Z≤16.639−34.4)−P(Z<16.636−34.4)
≈P(Z≤0.27711)−P(Z<0.09639)
≈0.609152−0.538393≈0.070759
2000⋅0.070759=142
There are 142 candidates between 36 and 39.
Comments