Question #147380
The mean score of 2000 students appearing for an examination is 34.4 and the standard deviation is 16.6. How many candidates may be expected to obtain marks
i) between 30 and 60
ii) less than 32
iii)greater than 36
iv)between 36 and 39.
1
Expert's answer
2020-11-30T13:07:24-0500

Assume the normality of distribution

Let X=X= the number of candidates: XN(μ,σ2)X\sim N(\mu, \sigma^2)

Then Z=XμσN(0,1)Z=\dfrac{X-\mu}{\sigma}\sim N(0, 1)

Given μ=34.4,σ=16.6,n=2000\mu=34.4, \sigma=16.6,n=2000


i)

P(30X60)=P(X60)P(X<30)=P(30\leq X\leq60)=P(X\leq60)-P(X<30)=

=P(Z6034.416.6)P(Z<3034.416.6)=P(Z\leq\dfrac{60-34.4}{16.6})-P(Z<\dfrac{30-34.4}{16.6})

P(Z1.54219)P(Z<0.26506)\approx P(Z\leq1.54219)-P(Z<-0.26506)

0.9384860.3954820.543004\approx0.938486-0.395482\approx0.543004

20000.543004=10862000\cdot0.543004=1086

There are 1086 candidates between 30 and 60.


ii)


P(X<32)=P(Z<3234.416.6)P(X<32)=P(Z<\dfrac{32-34.4}{16.6})

(Z<0.14458)0.442521\approx (Z<-0.14458)\approx0.442521

20000.442521=8852000\cdot0.442521=885

There are 885 candidates less than 32.


iii)


P(X>36)=1P(X36)P(X>36)=1-P(X\leq36)

=1P(Z3634.416.6)=1-P(Z\leq\dfrac{36-34.4}{16.6})

1(Z<0.09639)10.5383930.461607\approx1-(Z<0.09639)\approx1-0.538393\approx0.461607

20000.461607=9232000\cdot0.461607=923

There are 923 candidates greater than 36.


iv)

P(36X39)=P(X39)P(X<36)=P(36\leq X\leq39)=P(X\leq39)-P(X<36)=

=P(Z3934.416.6)P(Z<3634.416.6)=P(Z\leq\dfrac{39-34.4}{16.6})-P(Z<\dfrac{36-34.4}{16.6})

P(Z0.27711)P(Z<0.09639)\approx P(Z\leq0.27711)-P(Z<0.09639)

0.6091520.5383930.070759\approx0.609152-0.538393\approx0.070759

20000.070759=1422000\cdot0.070759=142

There are 142 candidates between 36 and 39.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS