"\\mu=\\dfrac{10+10+14+14+16+18+20}{7}=\\dfrac{102}{7}"
"\\sigma^2=\\dfrac{1}{7}\\bigg((10-\\dfrac{102}{7})^2+(10-\\dfrac{102}{7})^2"
"+(14-\\dfrac{102}{7})^2+(14-\\dfrac{102}{7})^2+(16-\\dfrac{102}{7})^2"
"+(18-\\dfrac{102}{7})^2+(20-\\dfrac{102}{7})^2\\bigg)"
"=\\dfrac{600}{49}" i. The number of possible samples which can be drawn without replacement is
"\\dbinom{7}{2}=21""\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n Sample\\ values & Sample\\ mean (\\bar{X}) & f \\\\ \\hline\n 10,10 & 10 & 1 \\\\\n10,14 & 12 & 4 \\\\\n10,16 & 13 & 2 \\\\\n10,18 & 14 & 2 \\\\\n10,20 & 15 & 2 \\\\\n14,14 & 14 & 1 \\\\\n14,16 & 15 & 2 \\\\\n14,18 & 16 & 2 \\\\\n14,20 & 17 & 2 \\\\\n16,18 & 17 & 1 \\\\\n16,20 & 18 & 1 \\\\\n18,20 & 19 & 1 \n\\end{array}" a.
"E(\\bar{X})=\\dfrac{1}{21}\\bigg(10(1)+12(4)+13(2)+14(3)"
"+15(4)+16(2)+17(3)+18(1)+19(1)\\bigg)"
"=\\dfrac{102}{7}"
b.
"E(\\bar{X}^2)=\\dfrac{1}{21}\\bigg(10^2(1)+12^2(4)+13^2(2)+14^2(3)"
"+15^2(4)+16^2(2)+17^2(3)+18^2(1)+19^2(1)\\bigg)"
"=\\dfrac{1522}{7}"
"Var(\\bar{X})=E(\\bar{X}^2)-(E(\\bar{X}))^2"
"=\\dfrac{1522}{7}-(\\dfrac{102}{7})^2=\\dfrac{250}{49}"
"\\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})=\\dfrac{\\dfrac{600}{49}}{2}(\\dfrac{7-2}{7-1})"
"=\\dfrac{250}{49}=Var(\\bar{X})" "E(\\bar{X})=\\mu=\\dfrac{102}{7}"
"Var(\\bar{X})=\\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})=\\dfrac{250}{49}"
ii.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n Sample\\ values & Sample\\ mean (\\bar{X}) & Probability \\\\ \\hline\n 10,10 & 10 & \\dfrac{2}{7}(\\dfrac{2}{7})\\\\ \\\\\n10,14 & 12 & \\dfrac{2}{7}(\\dfrac{2}{7}) \\\\ \\\\\n10,16 & 13 & \\dfrac{2}{7}(\\dfrac{1}{7}) \\\\ \\\\\n10,18 & 14 & \\dfrac{2}{7}(\\dfrac{1}{7}) \\\\ \\\\\n10,20 & 15 & \\dfrac{2}{7}(\\dfrac{1}{7}) \\\\ \\\\\n14,10 & 12 & \\dfrac{2}{7}(\\dfrac{2}{7}) \\\\ \\\\\n14,14 & 14 & \\dfrac{2}{7}(\\dfrac{2}{7}) \\\\ \\\\\n14,16 & 15 & \\dfrac{2}{7}(\\dfrac{1}{7}) \\\\ \\\\\n14,18 & 16 & \\dfrac{2}{7}(\\dfrac{1}{7}) \\\\ \\\\\n14,20 & 17 & \\dfrac{2}{7}(\\dfrac{1}{7}) \\\\ \\\\\n16,10 & 13 & \\dfrac{1}{7}(\\dfrac{2}{7}) \\\\ \\\\\n16,14 & 15 & \\dfrac{1}{7}(\\dfrac{2}{7}) \\\\ \\\\\n16,16 & 16 & \\dfrac{1}{7}(\\dfrac{1}{7}) \\\\ \\\\\n16,18 & 17 & \\dfrac{1}{7}(\\dfrac{1}{7}) \\\\ \\\\\n16,20& 18 & \\dfrac{1}{7}(\\dfrac{1}{7}) \\\\ \\\\\n18,10 & 14 & \\dfrac{1}{7}(\\dfrac{2}{7}) \\\\ \\\\\n18,14 & 16 & \\dfrac{1}{7}(\\dfrac{2}{7}) \\\\ \\\\\n18,16 & 17 & \\dfrac{1}{7}(\\dfrac{1}{7}) \\\\ \\\\\n18,18 & 18 & \\dfrac{1}{7}(\\dfrac{1}{7}) \\\\ \\\\\n18,20 & 19 & \\dfrac{1}{7}(\\dfrac{1}{7}) \\\\ \\\\\n20,10 & 15 & \\dfrac{1}{7}(\\dfrac{2}{7}) \\\\ \\\\\n20,14 & 17 & \\dfrac{1}{7}(\\dfrac{2}{7}) \\\\ \\\\\n20,16 & 18 & \\dfrac{1}{7}(\\dfrac{1}{7}) \\\\ \\\\\n20,18 & 19 & \\dfrac{1}{7}(\\dfrac{1}{7}) \\\\ \\\\\n20,20 & 20 & \\dfrac{1}{7}(\\dfrac{1}{7}) \\\\ \\\\\n\\end{array}""E(\\bar{X})=\\dfrac{1}{49}\\bigg(10(4)+12(8)+13(4)+14(8)"
"+15(8)+16(5)+17(6)+18(3)+19(2)+20(1)\\bigg)"
"=\\dfrac{102}{7}"
b.
"E(\\bar{X}^2)=\\dfrac{1}{49}\\bigg(10^2(4)+12^2(8)+13^2(4)+14^2(8)"
"+15^2(8)+16^2(5)+17^2(6)+18^2(3)+19^2(2)+(20^2(1)\\bigg)""=\\dfrac{10704}{49}"
"Var(\\bar{X})=E(\\bar{X}^2)-(E(\\bar{X}))^2"
"=\\dfrac{10704}{49}-(\\dfrac{102}{7})^2=\\dfrac{300}{49}"
"\\dfrac{\\sigma^2}{n}=\\dfrac{\\dfrac{600}{49}}{2}=\\dfrac{300}{49}=Var(\\bar{X})"
"E(\\bar{X})=\\mu=\\dfrac{102}{7}"
"Var(\\bar{X})=\\dfrac{\\sigma^2}{n}=\\dfrac{300}{49}"
Comments
Leave a comment