Question #147274
A continuous random variable has a density function�(�) = 2(5 – x)
5
, where 2<x<3. Calculate
the following probability correct up to 3 decimal places, and make the graph for part (a) only in
Answer sheet:
P (x < 2.5)
P (x > 2.2)
P (2.1 ≤ � ≤ 2.7)
1
Expert's answer
2020-11-30T10:32:17-0500
P(x<2.5)=22.52(5x)5dxP(x<2.5)=\displaystyle\int_{2}^{2.5}\dfrac{2(5-x)}{5}dx

=25[5xx22]2.52=\dfrac{2}{5}\big[5x-\dfrac{x^2}{2}\big]\begin{matrix} 2.5 \\ 2 \end{matrix}

=0.4(5(2.5)(2.5)22(5(2)(2)22))=0.4\bigg(5(2.5)-\dfrac{(2.5)^2}{2}-(5(2)-\dfrac{(2)^2}{2})\bigg)

=0.55=0.55

P(x<2.5)=0.55P(x<2.5)=0.55


P(x>2.2)=1P(x2.2)=122.22(5x)5dxP(x>2.2)=1-P(x\leq2.2)=1-\displaystyle\int_{2}^{2.2}\dfrac{2(5-x)}{5}dx

=125[5xx22]2.22=1-\dfrac{2}{5}\big[5x-\dfrac{x^2}{2}\big]\begin{matrix} 2.2 \\ 2 \end{matrix}

=10.4(5(2.2)(2.2)22(5(2)(2)22))=1-0.4\bigg(5(2.2)-\dfrac{(2.2)^2}{2}-(5(2)-\dfrac{(2)^2}{2})\bigg)

=0.768=0.768

P(x>2.2)=0.768P(x>2.2)=0.768


P(2.1x2.7)=2.12.72(5x)5dxP(2.1\leq x\leq 2.7)=\displaystyle\int_{2.1}^{2.7}\dfrac{2(5-x)}{5}dx

=25[5xx22]2.72.1=\dfrac{2}{5}\big[5x-\dfrac{x^2}{2}\big]\begin{matrix} 2.7 \\ 2.1 \end{matrix}=0.4(5(2.7)(2.7)22(5(2.1)(2.1)22))=0.4\bigg(5(2.7)-\dfrac{(2.7)^2}{2}-(5(2.1)-\dfrac{(2.1)^2}{2})\bigg)

=0.624=0.624

P(2.1x2.7)=0.624P(2.1\leq x\leq2.7)=0.624



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS