P = 58 % = 0.58
n = 11
Evaluate P(x) if x = 0, 1, 2, 3.
"P(x = 0) = \\frac{11!}{0!(11-0)!} \\times 0.58^0 \\times (1 \u2013 0.58)^{11-0} = 1 \\times 0.58^0 \\times 0.42^{11} = 0.000071 \\\\\n\nP(x = 1) = \\frac{11!}{1!(11-1)!} \\times 0.58^1 \\times (1 \u2013 0.58)^{11-1} = 11 \\times 0.58^1 \\times 0.42^{10} = 0.001089 \\\\\n\nP(x = 2) = \\frac{11!}{2!(11-2)!} \\times 0.58^2 \\times (1 \u2013 0.58)^{11-2} = 55 \\times 0.58^2 \\times 0.42^{9} = 0.007524 \\\\\n\nP(x = 3) = \\frac{11!}{3!(11-3)!} \\times 0.58^3 \\times (1 \u2013 0.58)^{11-3} = 165 \\times 0.58^3 \\times 0.42^{8} = 0.031172"
Use the additional rule for disjoint events:
"P(x < 4) = P(x=0) + P(x=1) + P(x=2) + P(x=3) \\\\\n\nP(x<4) = 0.000071 + 0.001089 + 0.007524 + 0.031172 = 0.039856"
Answer: 0.039856
Comments
Leave a comment