n = 7
P(success) = 0.35
The number of successes among a fixed number of independent trials follows binomial distribution. Lets evaluate the definition of binomial probability at m = 0, 1, 2, 3:
"P(X=0)=C(7,0)\\cdot 0.35^0\\cdot(1-0.35)^{7-0}=\\frac{7!}{0!(7-0)!}\\cdot0.35^0\\cdot0.65^7=0.049"
"P(X=1)=C(7,1)\\cdot 0.35^1\\cdot(1-0.35)^{7-1}=\\frac{7!}{1!(7-1)!}\\cdot0.35^1\\cdot0.65^6=0.1848"
"P(X=2)=C(7,2)\\cdot 0.35^2\\cdot(1-0.35)^{7-2}=\\frac{7!}{2!(7-2)!}\\cdot0.35^2\\cdot0.65^5=0.2985"
"P(X=3)=C(7,3)\\cdot 0.35^3\\cdot(1-0.35)^{7-3}=\\frac{7!}{3!(7-3)!}\\cdot0.35^3\\cdot0.65^4=0.2679"
"P(X<4)=P(X=0)+P(X=1)+P(X=2)+P(X=3)"
"P(X<4)=0.049+0.1848+0.2985+0.2679=0.8002"
Comments
Leave a comment