M = 1200
σ = 102
a. P(less than 1000 servings) = P(X < 1000)
"= P(\\frac{X-M}{\u03c3} < \\frac{1000-M}{\u03c3})"
"= P(Z < \\frac{1000-1200}{102})"
"=P(Z < -1.96) = 0.025"
b. P(more than 1400 servings) = P(X>1400)
"= P(\\frac{X-M}{\u03c3} > \\frac{1400-M}{\u03c3})"
"= P(Z > \\frac{1400-1200}{102})"
= P(Z > 1.96)
= 1 – P(Z ≤ 1.96) = 1 – 0.975 = 0.025
c. P(between 1100 to 1300 serving) = P(1100 < X < 1300)
"= P(\\frac{1100 \u2013 M}{\u03c3} < \\frac{X \u2013 M}{\u03c3} < \\frac{1300 \u2013 M}{\u03c3})"
"= P(\\frac{1100 \u2013 1200}{102} < Z < \\frac{1300 \u2013 1200}{102})"
= P(-0.98 < Z < 0.98)
=P(Z ≤ 0.98) – P(Z ≤ -0.98) = 0.8365 – 0.1635 = 0.673
d. P(less than 1000 but not less than 1350) = P(1000 > X) + P(X> 1350)
"= P(\\frac{1000 \u2013 M}{\u03c3} > \\frac{X \u2013 M}{\u03c3}) + P(\\frac{X \u2013 M}{\u03c3} > \\frac{1350 \u2013 M}{\u03c3})"
"= P(\\frac{1000 \u2013 1200}{102} > Z) + P(Z > \\frac{1350 \u2013 1200}{102})"
= P(-1.96 > Z) + P(Z > 1.47)
= P(Z < -1.96) + (1 – P(Z ≤ 1.47)) = 0.025 + (1 – 0.9292) = 0.0958
Comments
Leave a comment