A continuous random variable has a density functionš(š„) = 2(5 ā x) 5 , where 2<x<3. Calculate the following probability correct up to 3 decimal places, and make the graph for part (a) only in Answer sheet:
P (x < 2.5)
P (x > 2.2)
P (2.1 ā¤ š„ ā¤ 2.7)
I) p(x<2.5)= "\\displaystyle\\int\\limits^{{2.5}}_{{2}} 2\\cdot\\dfrac{(5-x)}{5}\\,{{d}x}"
= "\\int_{2}^{2.5}2dx-\\int_{2}^{2.5}\\frac{2x}{5}dx"
"=2x-\\frac{x^2}{5}| 2 to 2.5"
"=\\frac{11}{20}"
ii)"\\displaystyle\\int\\limits^{{3}}_{{2.2}} 2\\cdot\\dfrac{(5-x)}{5}\\,{{d}x}"
"\\int_{2.2}^{3}2dx-\\int_{2.2}^{3}\\frac{2x}{5}dx"
"=\\frac{96}{125}"
iii)"\\displaystyle\\int\\limits^{{2.7}}_{{2.1}} 2\\cdot\\dfrac{(5-x)}{5}\\,{{d}x}"
"\\int_{2.1}^{2.7}2dx-\\int_{2.1}^{2.7}\\frac{2x}{5}dx"
"=\\dfrac{78}{125}"
Comments
Leave a comment