"a.\\ \\xi\\in \\text{Poisson }(\\lambda)\\\\\n\\lambda=4\\\\\nP\\{\\xi=k\\}=\\frac{\\lambda^k}{k!}e^{-\\lambda},\\ k=0,1,2,\\ldots\\\\\nP\\{\\xi=0\\}=\\frac{4^0}{0!}e^{-4}=e^{-4}\\\\\nP\\{\\xi=1\\}=\\frac{4^1}{1!}e^{-4}=4e^{-4}\\\\\nP\\{\\xi=2\\}=\\frac{4^2}{2!}e^{-4}=8e^{-4}\\\\\nP\\{\\xi<3\\}=e^{-4}+4e^{-4}+8e^{-4}=13e^{-4}\\approx 0.24\\\\\nb.\\ P\\{\\xi=3\\}=\\frac{4^3}{3!}e^{-4}=\\frac{32}{3}e^{-4}\\\\\nP\\{\\xi=4\\}=\\frac{4^4}{4!}e^{-4}=\\frac{32}{3}e^{-4}\\\\\nP\\{\\xi=5\\}=\\frac{4^5}{5!}e^{-4}=\\frac{128}{15}e^{-4}\\\\\nP\\{\\xi=6\\}=\\frac{4^6}{6!}e^{-4}=\\frac{256}{45}e^{-4}\\\\\nP\\{\\xi>6\\}=1-\\sum_{k=0}^6P\\{\\xi=k\\}\\approx 0.11\\\\\nc.\\ M\\xi=4\\\\\nD\\xi=4\\\\\nM\\xi=D\\xi=\\lambda \\text{ for Poisson distribution}."
Comments
Leave a comment