2020-11-25T22:00:21-05:00
A continuous random variable has a density function f(x)= 2(5-x)/5 , where 2<x<3. Calculate
the following probability correct up to 3 decimal places, and make the graph for part (a) only in Answer sheet:
P (x < 2.5)
P (x > 2.2)
P (2.1 ≤
1
2020-11-29T19:05:44-0500
P ( x < 2.5 ) = ∫ 2 2.5 2 ( 5 − x ) 5 d x P(x<2.5)=\displaystyle\int_{2}^{2.5}\dfrac{2(5-x)}{5}dx P ( x < 2.5 ) = ∫ 2 2.5 5 2 ( 5 − x ) d x
= 2 5 [ 5 x − x 2 2 ] 2.5 2 = 0.55 =\dfrac{2}{5}\big[5x-\dfrac{x^2}{2}\big]\begin{matrix}
2.5 \\
2
\end{matrix}=0.55 = 5 2 [ 5 x − 2 x 2 ] 2.5 2 = 0.55
P ( x > 2.2 ) = 1 − P ( x ≤ 2.2 ) = 1 − ∫ 2 2.2 2 ( 5 − x ) 5 d x P(x>2.2)=1-P(x\leq2.2)=1-\displaystyle\int_{2}^{2.2}\dfrac{2(5-x)}{5}dx P ( x > 2.2 ) = 1 − P ( x ≤ 2.2 ) = 1 − ∫ 2 2.2 5 2 ( 5 − x ) d x
= 1 − 2 5 [ 5 x − x 2 2 ] 2.2 2 = 0.768 =1-\dfrac{2}{5}\big[5x-\dfrac{x^2}{2}\big]\begin{matrix}
2.2 \\
2
\end{matrix}=0.768 = 1 − 5 2 [ 5 x − 2 x 2 ] 2.2 2 = 0.768
P ( 2.1 ≤ x ≤ 2.7 ) = ∫ 2.1 2.7 2 ( 5 − x ) 5 d x P(2.1\leq x\leq 2.7)=\displaystyle\int_{2.1}^{2.7}\dfrac{2(5-x)}{5}dx P ( 2.1 ≤ x ≤ 2.7 ) = ∫ 2.1 2.7 5 2 ( 5 − x ) d x
= 2 5 [ 5 x − x 2 2 ] 2.7 2.1 = 0.624 =\dfrac{2}{5}\big[5x-\dfrac{x^2}{2}\big]\begin{matrix}
2.7 \\
2.1
\end{matrix}=0.624 = 5 2 [ 5 x − 2 x 2 ] 2.7 2.1 = 0.624
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments