Expected value:
"\\mu_X=0.5\\cdot120+0.3\\cdot100+0.2\\cdot250=140"
"\\mu_Y=0.5\\cdot200+0.3\\cdot150+0.2\\cdot100=165"
Standard deviation:
"\\sigma_X=\\sqrt{0.5\\cdot(120-140)^2+0.3\\cdot(100-140)^2+0.2\\cdot(250-140)^2}=55.68"
"\\sigma_Y=\\sqrt{0.5\\cdot(200-165)^2+0.3\\cdot(150-165)^2+0.2\\cdot(100-165)^2}=39.05"
Coefficient of variation:
"CV_X=\\frac{55.68}{140}=0.4"
"CV_Y=\\frac{39.05}{165}=0.27"
Correlation between the two investments:
"r=\\frac{(120-140)(200-165)+(100-140)(150-165)+(250-140)(100-165)}{\\sqrt{((120-140)^2+(100-140)^2+(250-140)^2)((200-165)^2+(150-165)^2+(100-165)^2)}}="
"=\\frac{-20\\cdot35+40\\cdot15-110\\cdot65}{\\sqrt{((-20)^2+(-40)^2+110^2)(35^2+(-15)^2+(-65)^2)}}=\\frac{-7250}{\\sqrt{14100\\cdot 5675}}=-0.81"
Answer:
"\\mu_X=140" "\\mu_Y=165"
"\\sigma_X=55.68" "\\sigma_Y=39.05"
"CV_X=0.4" "CV_Y=0.27"
"r=-0.81"
The coefficient of variation shows the risk per unit of return. The smaller the coefficient of variation, the lower risk factor occurs. Therefore choose Y.
The two investment has fairly strong negative relationship.
Comments
Leave a comment