Question #146481
Business Condition Probability Investment

X Fund Y Fund
Recession 0.50 120 200
Stable 0.30 100 150
Depression 0.20 250 100

1. Find out the expected value, standard deviation and coefficient variation of each investment.
2. Compute correlation between the two investments.
3. Give some managerial implications of this problem.
1
Expert's answer
2020-11-26T16:39:50-0500

Expected value:


μ=xP(x)\mu=\sum x\cdot P(x)

μX=0.5120+0.3100+0.2250=140\mu_X=0.5\cdot120+0.3\cdot100+0.2\cdot250=140

μY=0.5200+0.3150+0.2100=165\mu_Y=0.5\cdot200+0.3\cdot150+0.2\cdot100=165

Standard deviation:


σ=(xμ)2P(x)\sigma=\sqrt{\sum(x-\mu)^2\cdot P(x)}

σX=0.5(120140)2+0.3(100140)2+0.2(250140)2=55.68\sigma_X=\sqrt{0.5\cdot(120-140)^2+0.3\cdot(100-140)^2+0.2\cdot(250-140)^2}=55.68

σY=0.5(200165)2+0.3(150165)2+0.2(100165)2=39.05\sigma_Y=\sqrt{0.5\cdot(200-165)^2+0.3\cdot(150-165)^2+0.2\cdot(100-165)^2}=39.05

Coefficient of variation:


CV=σμCV=\frac{\sigma}{\mu}

CVX=55.68140=0.4CV_X=\frac{55.68}{140}=0.4

CVY=39.05165=0.27CV_Y=\frac{39.05}{165}=0.27

Correlation between the two investments:


r=(xμX)(yμY)(xμX)2(yμY)2r=\frac{\sum (x-\mu_X)(y-\mu_Y)}{\sqrt{\sum (x-\mu_X)^2\sum (y-\mu_Y)^2}}

r=(120140)(200165)+(100140)(150165)+(250140)(100165)((120140)2+(100140)2+(250140)2)((200165)2+(150165)2+(100165)2)=r=\frac{(120-140)(200-165)+(100-140)(150-165)+(250-140)(100-165)}{\sqrt{((120-140)^2+(100-140)^2+(250-140)^2)((200-165)^2+(150-165)^2+(100-165)^2)}}=

=2035+401511065((20)2+(40)2+1102)(352+(15)2+(65)2)=7250141005675=0.81=\frac{-20\cdot35+40\cdot15-110\cdot65}{\sqrt{((-20)^2+(-40)^2+110^2)(35^2+(-15)^2+(-65)^2)}}=\frac{-7250}{\sqrt{14100\cdot 5675}}=-0.81


Answer:

μX=140\mu_X=140 μY=165\mu_Y=165

σX=55.68\sigma_X=55.68 σY=39.05\sigma_Y=39.05

CVX=0.4CV_X=0.4 CVY=0.27CV_Y=0.27

r=0.81r=-0.81

The coefficient of variation shows the risk per unit of return. The smaller the coefficient of variation, the lower risk factor occurs. Therefore choose Y.

The two investment has fairly strong negative relationship.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS