a. Number of accidents is described by Poisson distribution.
"\\lambda" =E(X)=4
Then:
P(X=x)="\\frac{e^{-4}*4^x}{x!}"
P(X=0)+P(X=1)+P(X=2)="\\frac{e^{-4}*4^0}{0!}"+"\\frac{e^{-4}*4^1}{1!}"+"\\frac{e^{-4}*4^2}{2!}"=0.0183+0.0733+0.1465=0.2381
b.
P(X>6)=1-(P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6))=
1-("\\frac{e^{-4}*4^0}{0!}+\\frac{e^{-4}*4^1}{1!}+\\frac{e^{-4}*4^2}{2!}+\\frac{e^{-4}*4^3}{3!}+\\frac{e^{-4}*4^4}{4!}+\\frac{e^{-4}*4^5}{5!}+\\frac{e^{-4}*4^6}{6!}")=
1-(0.0183+0.0733+0.1465+0.1954+0.1954+0.1563+0.1042)=0.1106
c.
Expected number="\\lambda"=4
Variance="\\lambda"=4
Comments
Leave a comment