a. Number of accidents is described by Poisson distribution.
λ =E(X)=4
Then:
P(X=x)=x!e−4∗4x
P(X=0)+P(X=1)+P(X=2)=0!e−4∗40+1!e−4∗41+2!e−4∗42=0.0183+0.0733+0.1465=0.2381
b.
P(X>6)=1-(P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6))=
1-(0!e−4∗40+1!e−4∗41+2!e−4∗42+3!e−4∗43+4!e−4∗44+5!e−4∗45+6!e−4∗46)=
1-(0.0183+0.0733+0.1465+0.1954+0.1954+0.1563+0.1042)=0.1106
c.
Expected number=λ=4
Variance=λ=4
Comments