Lets denote R for drawing a red ball and W for drawing a white ball
Possible results given that the winning player wins on his second draw:
RRR or RWR or RRWR or WRWR or WRRR
where RRR or RWR are possible results when A wins.
So
P(RRR or RWR)="\\frac{3}{8}\\cdot\\frac{5}{7}\\cdot\\frac{2}{6}+\\frac{3}{8}\\cdot\\frac{2}{7}\\cdot\\frac{1}{6}=\\frac{3}{28}"
P(RRR or RWR or RRWR or WRWR or WRRR)="\\frac{3}{8}\\cdot\\frac{5}{7}\\cdot\\frac{2}{6}+\\frac{3}{8}\\cdot\\frac{2}{7}\\cdot\\frac{1}{6}+\\frac{3}{8}\\cdot\\frac{2}{7}\\cdot\\frac{5}{6}\\cdot\\frac{1}{5}+\\frac{5}{8}\\cdot\\frac{3}{7}\\cdot\\frac{4}{6}\\cdot\\frac{2}{5}+\\frac{5}{8}\\cdot\\frac{3}{7}\\cdot\\frac{2}{6}\\cdot\\frac{1}{5}=\\frac{3}{14}"
Therefore
P(A is the winner, given that the winning player wins on his second draw)="\\frac{\\frac{3}{28}}{\\frac{3}{14}}=\\frac{1}{2}"
Answer: "\\frac{1}{2}"
Comments
Leave a comment