Question #141025
For a discrete random variable that is poission distributed with a mean i=20 which one of the following statement is incorrect
1. P (X=0)
2. P (X-0 )
3. P (X-1)
4. P (X-7)
5. The variance a is 4
1
Expert's answer
2020-11-03T16:50:01-0500

XPo(λ)X\sim Po(\lambda)

P(X=x)=eλλxx!P(X=x)=\dfrac{e^{-\lambda}\cdot\lambda^x}{x!}

mean=λ=Var(x)mean=\lambda=Var(x)

Given mean=20mean=20

Then λ=20\lambda=20

1.


P(X=0)=e202000!=P(X=0)=\dfrac{e^{-20}\cdot20^0}{0!}=

=e200.00000000210=e^{-20}\approx0.0000000021\approx0

2.


P(X>0)=1P(X=0)=1e202000!=P(X>0)=1-P(X=0)=1-\dfrac{e^{-20}\cdot20^0}{0!}=

=1e200.99999999791=1-e^{-20}\approx0.9999999979\approx1

3.


P(X>1)=1P(X=0)P(X=1)=P(X>1)=1-P(X=0)-P(X=1)=

=1e202000!e202011!==1-\dfrac{e^{-20}\cdot20^0}{0!}-\dfrac{e^{-20}\cdot20^1}{1!}=

=121e200.99999995671=1-21\cdot e^{-20}\approx0.9999999567\approx1

4.


P(X>7)=1P(X=0)P(X=1)P(X>7)=1-P(X=0)-P(X=1)-

P(X=2)P(X=3)P(X=4)-P(X=2)-P(X=3)-P(X=4)-

P(X=5)P(X=6)P(X=7)=-P(X=5)-P(X=6)-P(X=7)=

=1e202000!e202011!e202022!=1-\dfrac{e^{-20}\cdot20^0}{0!}-\dfrac{e^{-20}\cdot20^1}{1!}-\dfrac{e^{-20}\cdot20^2}{2!}-

e202033!e202044!e202055!-\dfrac{e^{-20}\cdot20^3}{3!}-\dfrac{e^{-20}\cdot20^4}{4!}-\dfrac{e^{-20}\cdot20^5}{5!}-

e202066!e202077!-\dfrac{e^{-20}\cdot20^6}{6!}-\dfrac{e^{-20}\cdot20^7}{7!}\approx

0.9992214099\approx0.9992214099

5.

Var(X)=λ=204Var(X)=\lambda=20\not=4



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS