"X\\sim Bin(n, p)"
Given "n=6, p=0.25"
1.
The mean "u=1.5"
2.
"\\text{standard deviation}=\\sigma=\\sqrt{1.125}=0.75\\sqrt{2}\\approx1.06066"
The standard deviation "a=0.75\\sqrt{2}\\approx1.06066\\not=1.125"
3.
"=\\dfrac{6!}{3!(6-3)!}(\\dfrac{1}{64})(\\dfrac{27}{64})=\\dfrac{135}{1024}=0.1318359375"
"P(X=3)=0.1318359375"
4.
"P(X=4)=\\dbinom{6}{4}(0.25)^4(1-0.25)^{6 -4}=""=\\dfrac{6!}{4!(6-4)!}(\\dfrac{1}{256})(\\dfrac{9}{16})=\\dfrac{135}{4096}=0.032958984375"
"=\\dfrac{6!}{5!(6-5)!}(\\dfrac{1}{1024})(\\dfrac{3}{4})=\\dfrac{9}{2048}=0.00439453125"
"P(X=6)=\\dbinom{6}{6}(0.25)^6(1-0.25)^{6 -6}="
"=\\dfrac{1}{4096}=0.000244140625"
"P(X\\geq4)=P(X=4)+P(X=5)+P(X=6)=""=0.03759765625"
"P(X\\leq4)=1-P(X=5)-P(X=6)=""=0.995361328125"
5.
"P(X=2)=\\dbinom{6}{2}(0.25)^2(1-0.25)^{6 -2}=""=\\dfrac{6!}{2!(6-2)!}(\\dfrac{1}{16})(\\dfrac{81}{256})=\\dfrac{1215}{4096}=0.296630859375"
"=\\dfrac{729}{4096}=0.177978515625"
"=6(\\dfrac{1}{4})(\\dfrac{243}{1024})=\\dfrac{729}{2048}=0.35595703125"
"P(X<2)=P(X=0)+P(X=1)=""=0.533935546875"
"P(X\\leq2)=P(X=0)+P(X=1)+P(X=2)=""=0.83056640625"
"P(X>2)=1-P(X\\leq2)=""=0.16943359375"
Comments
Leave a comment