Answer to Question #138990 in Statistics and Probability for Eme

Question #138990
The following table shows the amount of converted sugar in a chemical process at different temperatures.
Temperature, x Converted Sugar, y
1.2 8.2
1.4 8.5
1.6 8.4
1.8 9.3
2.0 8.9
2.2 10.5
2.4 9.3


a. Compute for the correlation coefficient
b. Estimate the linear regression line.
c. Estimate the mean amount of sugar produced when the temperature recorded is 1.7.
1
Expert's answer
2020-10-19T17:05:29-0400

Solution

a. Correlation coefficient, r.


r=n(xy)(x)(y)[nx2(x)2][ny2(y)2]r={n \sum (xy)- (\sum x)( \sum y) \over \sqrt{[n\sum x^2 - ({\sum x})^2][n\sum y^2 - ({\sum y})^2]}}=(7115.14)(12.663.1)[723.8(12.6)2][7572.49(63.1)2]={(7*115.14)-(12.6*63.1) \over \sqrt{[7*23.8 - {(12.6)}^2][7*572.49-{(63.1)}^2]}}=10.9214.2277=0.76751={10.92 \over 14.2277} = 0.76751

Ans: 0.76751


b. Linear regression line

y=a+bxy=a+bx


b=n(xy)(x)(y)[nx2(x)2]b= {n \sum (xy)- (\sum x)( \sum y) \over [n\sum x^2 - ({\sum x})^2]}=7115.14(12.663.1)(723.8(12.6)2=10.927.84={7*115.14 - (12.6*63.1) \over (7*23.8 - {(12.6)}^2} = {10.92 \over 7.84 }=1.3929=1.3929

a=ybxna= {\sum y - b\sum x \over n}=63.11.3929(12.6)7={63.1 - 1.3929(12.6) \over 7}=6.5071=6.5071

y=6.5071+1.3929x\therefore y=6.5071+1.3929x


c. mean amount of sugar when temp. is 1.7


y=6.5071+1.3929(1.7)y=6.5071+1.3929(1.7)=8.87503=8.87503


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment