Solution
a. Correlation coefficient, r.
"r={n \\sum (xy)- (\\sum x)( \\sum y) \\over \\sqrt{[n\\sum x^2 - ({\\sum x})^2][n\\sum y^2 - ({\\sum y})^2]}}""={(7*115.14)-(12.6*63.1) \\over \\sqrt{[7*23.8 - {(12.6)}^2][7*572.49-{(63.1)}^2]}}""={10.92 \\over 14.2277} = 0.76751" Ans: 0.76751
b. Linear regression line
"y=a+bx"
"b= {n \\sum (xy)- (\\sum x)( \\sum y) \\over [n\\sum x^2 - ({\\sum x})^2]}""={7*115.14 - (12.6*63.1) \\over (7*23.8 - {(12.6)}^2} = {10.92 \\over 7.84 }""=1.3929"
"a= {\\sum y - b\\sum x \\over n}""={63.1 - 1.3929(12.6) \\over 7}""=6.5071"
"\\therefore y=6.5071+1.3929x"
c. mean amount of sugar when temp. is 1.7
"y=6.5071+1.3929(1.7)""=8.87503"
Comments
Leave a comment