a)xi=1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4
"\\mu_X = 12.6\/7 = 1.8"
yi=8.2, 8.5, 8.4, 9.3, 8.9, 10.5, 9.3
"\\mu_Y = 63.1\/7 = 9.0143"
"\\sum(x_i - \\mu_X)^2=1.12"
"\\sum(y_i - \\mu_Y)^2=3.68857"
"\u03c3_X=\\sqrt{\\frac{1.12}{7}}=\\sqrt{0.16}=0.4"
"\u03c3_Y=\\sqrt{\\frac{3.68857}{7}}=\\sqrt{0.5269}=0.7259"
"\u03c1_(XY)=\\frac{1}{7}\\times \\frac{1.56}{0.4\\times0.7259}=0.7675"
b) Sum of X = 12.6
Sum of Y = 63.1
Mean X = 1.8
Mean Y = 9.0143
Sum of squares (SSX) = 1.12
Sum of products (SP) = 1.56
Regression Equation = ŷ = bX + a
b = SP/SSX = 1.56/1.12 = 1.39286
a = MY - bMX = 9.01 - (1.39*1.8) = 6.50714
ŷ = 1.39286X + 6.50714
c) using line formula, ŷ (1.7)=1.39286*1.7 + 6.50714=8.875
Comments
Leave a comment