Solution to 1:
Population.
"\\mu = {\\sum x \\over N}"
"\\sum x= 540"
N=16
"\\mu = {540 \\over 16}=33.75"
"SS = \\sum {(x- \\mu)}^2"
thus, SS= 1603
Variance of population
"var={SS \\over N}"
"={1603\/16}=100.19" (to 2d.p)
Standard deviation
"sd={\\sqrt{var}}"
"= {\\sqrt{100.19}}=10.01" (to 2 d.p)
Min
The minimum value in the population is:
13
Sample
n=16
"\\bar{x} = {\\sum x \\over n}={540 \\over 16}=33.75"
"SS={\\sum(x- \\bar{x})^2}"
thus, SS=1603
variance of sample
"var={SS \\over n-1} = {1603 \\over 15}"
=106.87 (to 2d.p)
standard deviation of sample
"sd= \\sqrt{var}=\\sqrt{106.87}"
=10.34 (to 2d.p)
Min
The minimum value in the sample is :
13
Comments
Leave a comment