"\\begin{matrix}\n & x & y & xy & x^2 & y^2 \\\\\n & 4 & 6300 & 25200 & 16 & 39690000 \\\\\n & 4 & 5800 & 23200 & 16 & 33640000 \\\\\n & 5 & 5700 & 28500 & 25 & 32490000 \\\\\n & 5 & 4500 & 22500 & 25 & 20250000 \\\\\n & 7 & 4500 & 31500 & 49 & 20250000 \\\\\n & 7 & 4200 & 29400 & 49 & 17640000 \\\\\n & 8 & 4100 & 32800 & 64 & 16810000\\\\\n & 9 & 3100 & 27900 & 81 & 9610000 \\\\\n & 10 & 2100 & 21000 & 100 & 4410000 \\\\\n & 11 & 2500 & 27500 & 121 & 6250000 \\\\\n & 12 & 2200 & 26400 & 144 & 4840000 \\\\\n Sum= & 82 & 45000 & 265900 & 690 & 205880000 \n\\end{matrix}"
"\\bar{y}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^ny_i=\\dfrac{45000}{11}\\approx40.909091"
"SS_{xx}=\\displaystyle\\sum_{i=1}^nx_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nx_i)^2="
"=690-\\dfrac{82^2}{11}\\approx78.727273"
"SS_{yy}=\\displaystyle\\sum_{i=1}^ny_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^ny_i)^2="
"=205880000 -\\dfrac{45000^2}{11}\\approx21789090.909091"
"=265900 -\\dfrac{82\\cdot45000}{11}\\approx-39554.545455"
Therefore, based on the above calculations, the regression coefficients (the slope "m,"
and the y-intercept "n") are obtained as follows:
"n=\\bar{y}-m\\cdot\\bar{x}\\approx"
"\\approx40.909091-(-502.424942)\\cdot7.454545\\approx7836.25866"
Therefore, we find that the regression equation is:
"y(4)=7836.25866-502.424942(4)=5826.56"
"y(5)=7836.25866-502.424942(5)=5324.13"
"y(7)=7836.25866-502.424942(7)=4319.28"
"y(8)=7836.25866-502.424942(8)=3816.86"
"y(9)=7836.25866-502.424942(9)=3314.43"
"y(10)=7836.25866-502.424942(10)=2812.01"
"y(11)=7836.25866-502.424942(11)=2309.58"
"y(12)=7836.25866-502.424942(12)=1807.16"
"RSS=\\displaystyle\\sum_{i=1}^n(y_{iobs}-y_{ipred})^2=SS_{yy}-mSS_{xy}="
"=21789090.909091(1-\\dfrac{(-39554.545455)^2}{78.727273(21789090.909091)})="
"=1915896.5844"
The sum of square of residuals is minimum for points lying on the regression line and so cannot be less than "1915896.5844" for any other line.
"r=\\dfrac{SS_{xy}}{\\sqrt{SS_{xx}}\\sqrt{SS_{yy}}}=\\dfrac{-39554.545455}{\\sqrt{78.727273}\\sqrt{21789090.909091}}\\approx"
"\\approx-0.955024"
Strong negarive correlation.
Comments
Dear Jeco, please use the panel for submitting a new question.
2. You have to examine the relationship between the age and price for used cars sold in the last year by a car dealership company with the given table of data. Car Age (in years) Price (in dollars) 4 6300 4 5800 5 5700 5 4500 7 4500 7 4200 8 4100 9 3100 10 2100 11 2500 12 2200 What is the estimated cost value of car ages 2 and 15?
Leave a comment