Let "B_i=A_i-\\cup_{k=1}^{i-1}A_k"
then "B_i\\subseteq A_i\\ and\\ P(B_i)\\leq P(A_i)."
Let "i\\neq j" , without loss of generality, assume "i>j", then
"B_i\\cap B_j=(A_i-\\cup_{k=1}^{i-1}A_k)\\cap (A_j-\\cup_{k=1}^{j-1}A_k)\\subseteq\\\\\n\\subseteq(A_i-\\cup_{k=1}^{i-1}A_k)\\cap A_j,"
since "j<i", then "A_j\\subseteq \\cup_{k=1}^{i-1}A_k", hence "(A_i-\\cup_{k=1}^{i-1}A_k)\\cap A_j=\\empty," and
"B_i\\cap B_j=\\empty."
Since "B_i\\cap B_j=\\empty", then, by countable additivity,
"P(\\cup_{k=1}^{n}B_k)=\\sum_{k=1}^nP(B_k)".
"\\cup_{k=1}^{n}B_k=\\\\\nA_1\\cup (A_2-A_1)\\cup(A_3-\\cup_{k=1}^{2}A_k)\\cup...\\\\\n...\\cup (A_n-\\cup_{k=1}^{n-1}A_k)=\\\\\n(A_1\\cup A_2)\\cup (A_3-\\cup_{k=1}^{2}A_k)\\cup...\\\\\n...\\cup (A_n-\\cup_{k=1}^{n-1}A_k)=\\\\\n(A_1\\cup A_2\\cup A_3)\\cup... \\cup (A_n-\\cup_{k=1}^{n-1}A_k)=...\\\\\n=(A_1\\cup A_2\\cup...\\cup A_{n-1}\\cup (A_n-\\cup_{k=1}^{n-1}A_k)=\\\\\n\\cup_{k=1}^{n}A_k)"
therefore,
"\\cup_{k=1}^{n}B_k=\\cup_{k=1}^{n}A_k\\ and\\ \\\\\nP(\\cup_{k=1}^{n}A_k)=P(\\cup_{k=1}^{n}B_k)=\\\\\n\\sum_{k=1}^nP(B_k)\\leq \\sum_{k=1}^nP(A_k)",
thus,
"P(\\cup_{k=1}^{n}A_k)\n\\leq \\sum_{k=1}^nP(A_k)."
Comments
Leave a comment