Question #131323
Proof Boole's inequality
for n events A1,A2,...An.
1
Expert's answer
2020-09-01T18:25:26-0400

Let Bi=Aik=1i1AkB_i=A_i-\cup_{k=1}^{i-1}A_k

then BiAi and P(Bi)P(Ai).B_i\subseteq A_i\ and\ P(B_i)\leq P(A_i).

Let iji\neq j , without loss of generality, assume i>ji>j, then

BiBj=(Aik=1i1Ak)(Ajk=1j1Ak)(Aik=1i1Ak)Aj,B_i\cap B_j=(A_i-\cup_{k=1}^{i-1}A_k)\cap (A_j-\cup_{k=1}^{j-1}A_k)\subseteq\\ \subseteq(A_i-\cup_{k=1}^{i-1}A_k)\cap A_j,

since j<ij<i, then Ajk=1i1AkA_j\subseteq \cup_{k=1}^{i-1}A_k, hence (Aik=1i1Ak)Aj=,(A_i-\cup_{k=1}^{i-1}A_k)\cap A_j=\empty, and

BiBj=.B_i\cap B_j=\empty.

Since BiBj=B_i\cap B_j=\empty, then, by countable additivity,

P(k=1nBk)=k=1nP(Bk)P(\cup_{k=1}^{n}B_k)=\sum_{k=1}^nP(B_k).

k=1nBk=A1(A2A1)(A3k=12Ak)......(Ank=1n1Ak)=(A1A2)(A3k=12Ak)......(Ank=1n1Ak)=(A1A2A3)...(Ank=1n1Ak)=...=(A1A2...An1(Ank=1n1Ak)=k=1nAk)\cup_{k=1}^{n}B_k=\\ A_1\cup (A_2-A_1)\cup(A_3-\cup_{k=1}^{2}A_k)\cup...\\ ...\cup (A_n-\cup_{k=1}^{n-1}A_k)=\\ (A_1\cup A_2)\cup (A_3-\cup_{k=1}^{2}A_k)\cup...\\ ...\cup (A_n-\cup_{k=1}^{n-1}A_k)=\\ (A_1\cup A_2\cup A_3)\cup... \cup (A_n-\cup_{k=1}^{n-1}A_k)=...\\ =(A_1\cup A_2\cup...\cup A_{n-1}\cup (A_n-\cup_{k=1}^{n-1}A_k)=\\ \cup_{k=1}^{n}A_k)

therefore,

k=1nBk=k=1nAk and P(k=1nAk)=P(k=1nBk)=k=1nP(Bk)k=1nP(Ak)\cup_{k=1}^{n}B_k=\cup_{k=1}^{n}A_k\ and\ \\ P(\cup_{k=1}^{n}A_k)=P(\cup_{k=1}^{n}B_k)=\\ \sum_{k=1}^nP(B_k)\leq \sum_{k=1}^nP(A_k),

thus,

P(k=1nAk)k=1nP(Ak).P(\cup_{k=1}^{n}A_k) \leq \sum_{k=1}^nP(A_k).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS