Let Bi=Ai−∪k=1i−1Ak
then Bi⊆Ai and P(Bi)≤P(Ai).
Let i=j , without loss of generality, assume i>j, then
Bi∩Bj=(Ai−∪k=1i−1Ak)∩(Aj−∪k=1j−1Ak)⊆⊆(Ai−∪k=1i−1Ak)∩Aj,
since j<i, then Aj⊆∪k=1i−1Ak, hence (Ai−∪k=1i−1Ak)∩Aj=∅, and
Bi∩Bj=∅.
Since Bi∩Bj=∅, then, by countable additivity,
P(∪k=1nBk)=∑k=1nP(Bk).
∪k=1nBk=A1∪(A2−A1)∪(A3−∪k=12Ak)∪......∪(An−∪k=1n−1Ak)=(A1∪A2)∪(A3−∪k=12Ak)∪......∪(An−∪k=1n−1Ak)=(A1∪A2∪A3)∪...∪(An−∪k=1n−1Ak)=...=(A1∪A2∪...∪An−1∪(An−∪k=1n−1Ak)=∪k=1nAk)
therefore,
∪k=1nBk=∪k=1nAk and P(∪k=1nAk)=P(∪k=1nBk)=∑k=1nP(Bk)≤∑k=1nP(Ak),
thus,
P(∪k=1nAk)≤∑k=1nP(Ak).
Comments