Density function of the exponential distribution is "f_X(x)=\\begin{cases} \\lambda e^{-\\lambda x} \\quad ,x \\geq0 \\\\ 0 \\qquad , x < 0\\end{cases}" with mean "\\dfrac{1}{\\lambda}."
Task says that mean is 4 minutes, so "\\lambda = \\frac{1}{4}".
Solution
"\\int\\limits_7^\\infty f_X(x)\\;dx = \\int\\limits_7^\\infty \\frac{1}{4}\\cdot e^{-\\frac{1}{4}x}\\;dx \n= -e^{-\\frac{1}{4}x} |_7^\\infty = e^{-\\frac{7}{4}} \\approx 0.1738"
Answer: 0.1738
Solution
"\\int\\limits_{-\\infty}^8 f_X(x)\\;dx = \\int\\limits_0^8 \\frac{1}{4}\\cdot e^{-\\frac{1}{4}x}\\;dx \n= -e^{-\\frac{1}{4}x} |_0^8= 1 - e^{-2} \\approx 0.8647"
Answer: 0.8647
Solution
"\\int\\limits_3^6 f_X(x)\\;dx = \\int\\limits_3^6 \\frac{1}{4}\\cdot e^{-\\frac{1}{4}x}\\;dx \n= -e^{-\\frac{1}{4}x} |_3^6= e^{-\\frac{3}{4}} - e^{-\\frac{6}{4}} \\approx 0.2492"
Answer: 0.2492
Comments
Leave a comment