χ2="\\sum"ri=1"\\sum"cj=1=(Oij-Eij)2/Eij
Eij=RiCj/N, Ri - sum of i-th row, Cj - sum of j-th column, N - total sample size
E11=(54*125)/268=25, (O11-E11)2/E11=0.0416
E12=(54*143)/268=29, (O12-E12)2/E12=0.033
E21=(85*125)/268=40, (O21-E21)2/E21=0.024
E22=(85*143)/268=45, (O22-E22)2/E22=0.0227
E31=(63*125)/268=29, (O31-E31)2/E31=0.281
E32=(63*143)/268=34, (O32-E32)2/E32=0.29
E41=(66*125)/268=31, (O41-E41)2/E41=0.32
E42=(66*143)/268=35, (O42-E42)2/E42=0.2368
χ2=1.2491
degrees of freedom: (r-1)(c-1)=3
the critical value of chi square with 3df at 5% level significance: 7.82
χ2<critical value, so we accept that there is no difference between machines
Comments
Leave a comment