Question #116714
Determine the value of c that makes the function f (x, y)= c(x + y) a joint probability density function over the range 0 < x < 3 and 0 < y < x. Determine the following:
a)P(X<1,Y<2)
b) P(1<x<2)
(c)P(Y>1) (e)E(X)
(d) P(X<2,Y<2)

(f) E(Y) (g) Marginal probability distribution of X

(h) Conditional probability distribution of Y given X = 1
(i) E (Y | X = 1) (j) P (Y > 2 | X = 1)
(k) Conditional probability distribution of X given Y = 2
1
Expert's answer
2020-05-25T21:17:21-0400
f(x,y)=c(x+y),0<x<3,0<y<xf(x,y)=c(x+y),0<x<3,0<y<x

030xf(x,y)dydx=030xc(x+y)dydx=\displaystyle\int_{0}^3\displaystyle\int_{0}^xf(x,y)dydx=\displaystyle\int_{0}^3\displaystyle\int_{0}^xc(x+y)dydx=

=c03[xy+y22]x0dx=3c203x2dx=c2[x3]30=27c2=1=c\displaystyle\int_{0}^3\big[xy+{y^2 \over 2}\big]\begin{matrix} x \\ 0 \end{matrix}dx={3c \over 2}\displaystyle\int_{0}^3x^2dx={c \over 2}[x^3]\begin{matrix} 3 \\ 0 \end{matrix}={27c \over 2}=1

c=227c={2 \over 27}

f(x,y)=227(x+y),0<x<3,0<y<xf(x,y)={2 \over 27}(x+y),0<x<3,0<y<x

a)


P(X<1,Y<2)=0102227(x+y)dydx=P(X<1,Y<2)=\displaystyle\int_{0}^1\displaystyle\int_{0}^2{2 \over 27}(x+y)dydx=

=22701[xy+y22]20dx=22701(2x+2)dx=={2 \over 27}\displaystyle\int_{0}^1\big[xy+{y^2 \over 2}\big]\begin{matrix} 2 \\ 0 \end{matrix}dx={2 \over 27}\displaystyle\int_{0}^1(2x+2)dx=

=227[x2+2x]10=29={2 \over 27}\big[x^2+2x\big]\begin{matrix} 1 \\ 0 \end{matrix}={2 \over 9}

b)


P(1<X<2)=P(1<X<2,0<Y<x)=P(1<X<2)=P(1<X<2,0<Y<x)=

=120x227(x+y)dydx=22712[xy+y22]x0dx==\displaystyle\int_{1}^2\displaystyle\int_{0}^x{2 \over 27}(x+y)dydx={2 \over 27}\displaystyle\int_{1}^2\big[xy+{y^2 \over 2}\big]\begin{matrix} x \\ 0 \end{matrix}dx=

=1912x2dx=127[x3]21=727={1 \over 9}\displaystyle\int_{1}^2x^2dx={1 \over 27}\big[x^3\big]\begin{matrix} 2 \\ 1 \end{matrix}={7 \over 27}

(c)


P(Y>1)=P(0<X<3,1<Y<x)=P(Y>1)=P(0<X<3,1<Y<x)=

=031x227(x+y)dydx=22703[xy+y22]x1dx==\displaystyle\int_{0}^3\displaystyle\int_{1}^x{2 \over 27}(x+y)dydx={2 \over 27}\displaystyle\int_{0}^3\big[xy+{y^2 \over 2}\big]\begin{matrix} x \\ 1 \end{matrix}dx=

=22703(32x2x12)dx=127[x3x2x]30=={2 \over 27}\displaystyle\int_{0}^3({3 \over 2}x^2-x-{1 \over 2})dx={1 \over 27}\big[x^3-x^2-x\big]\begin{matrix} 3 \\ 0 \end{matrix}=

=59={5 \over 9}

(d)


P(X<2,Y<2)=P(0<X<2,0<Y<2)=P(X<2,Y<2)=P(0<X<2,0<Y<2)=

=0202227(x+y)dydx=22702[xy+y22]20dx==\displaystyle\int_{0}^2\displaystyle\int_{0}^2{2 \over 27}(x+y)dydx={2 \over 27}\displaystyle\int_{0}^2\big[xy+{y^2 \over 2}\big]\begin{matrix} 2 \\ 0 \end{matrix}dx=

=22702(2x+2)dx=227[x2+2x]20=1627={2 \over 27}\displaystyle\int_{0}^2(2x+2)dx={2 \over 27}\big[x^2+2x\big]\begin{matrix} 2 \\ 0 \end{matrix}={16 \over 27}

(e)


E(X)=030x227x(x+y)dydx=E(X)=\displaystyle\int_{0}^3\displaystyle\int_{0}^x{2 \over 27}x(x+y)dydx=

=22703[x2y+xy22]x0dx=1903x3dx=={2 \over 27}\displaystyle\int_{0}^3\big[x^2y+{xy^2 \over 2}\big]\begin{matrix} x \\ 0 \end{matrix}dx={1 \over 9}\displaystyle\int_{0}^3x^3dx=

=19[x44]30=94={1 \over 9}\big[{x^4 \over 4}\big]\begin{matrix} 3 \\ 0 \end{matrix}={9 \over 4}

(f)


E(Y)=030x227y(x+y)dydx=E(Y)=\displaystyle\int_{0}^3\displaystyle\int_{0}^x{2 \over 27}y(x+y)dydx=

=22703[xy22+y33]x0dx=58103x3dx=={2 \over 27}\displaystyle\int_{0}^3\big[{xy^2 \over 2}+{y^3 \over 3}\big]\begin{matrix} x \\ 0 \end{matrix}dx={5 \over 81}\displaystyle\int_{0}^3x^3dx=

=581[x44]30=54={5 \over 81}\big[{x^4 \over 4}\big]\begin{matrix} 3 \\ 0 \end{matrix}={5 \over 4}

(g) Marginal probability distribution of X 


fX(x)=0x227(x+y)dy=227[xy+y22]x0=19x2f_X(x)=\displaystyle\int_{0}^x{2 \over 27}(x+y)dy={2 \over 27}\big[xy+{y^2 \over 2}\big]\begin{matrix} x \\ 0 \end{matrix}={1 \over 9}x^2

(h) Conditional probability distribution of Y given X = 1 


fYX=1(y)=fXY(1,y)fX(1)=227(1+y)19(1)2=23(1+y)f_{Y|X=1}(y)={f_{XY}(1,y) \over f_X(1)}={{2 \over 27}(1+y) \over{1 \over 9}(1)^2}={2 \over 3}(1+y)

(i)


E(YX=1)=13yfYx=1(y)dy=1323y(1+y)dy=E(Y|X=1)=\displaystyle\int_{1}^3yf_{Y|x=1}(y)dy=\displaystyle\int_{1}^3{2 \over 3}y(1+y)dy=

=23[y22+y33]31=769={2 \over 3}\big[{y^2 \over 2}+{y^3 \over 3}\big]\begin{matrix} 3 \\ 1 \end{matrix}={76 \over 9}

(j)


P(Y>2X=1)=0P(Y>2|X=1)=0

(k) Conditional probability distribution of X given Y = 2

Marginal probability distribution of Y 


fY(y)=03227(x+y)dx=227[xy+x22]30=f_Y(y)=\displaystyle\int_{0}^3{2 \over 27}(x+y)dx={2 \over 27}\big[xy+{x^2 \over 2}\big]\begin{matrix} 3 \\ 0 \end{matrix}=

=227(3y+92)={2 \over 27}(3y+{9 \over 2})

fXY=2(x)=fXY(x,2)fY(2)=227(x+2)23(1+2)=127(x+2)f_{X|Y=2}(x)={f_{XY}(x,2) \over f_Y(2)}={{2 \over 27}(x+2) \over{2 \over 3}(1+2)}={1 \over 27}(x+2)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS