f(x,y)=c(x+y),0<x<3,0<y<x
∫03∫0xf(x,y)dydx=∫03∫0xc(x+y)dydx=
=c∫03[xy+2y2]x0dx=23c∫03x2dx=2c[x3]30=227c=1
c=272
f(x,y)=272(x+y),0<x<3,0<y<x a)
P(X<1,Y<2)=∫01∫02272(x+y)dydx=
=272∫01[xy+2y2]20dx=272∫01(2x+2)dx=
=272[x2+2x]10=92
b)
P(1<X<2)=P(1<X<2,0<Y<x)=
=∫12∫0x272(x+y)dydx=272∫12[xy+2y2]x0dx=
=91∫12x2dx=271[x3]21=277 (c)
P(Y>1)=P(0<X<3,1<Y<x)=
=∫03∫1x272(x+y)dydx=272∫03[xy+2y2]x1dx=
=272∫03(23x2−x−21)dx=271[x3−x2−x]30=
=95 (d)
P(X<2,Y<2)=P(0<X<2,0<Y<2)=
=∫02∫02272(x+y)dydx=272∫02[xy+2y2]20dx=
=272∫02(2x+2)dx=272[x2+2x]20=2716 (e)
E(X)=∫03∫0x272x(x+y)dydx=
=272∫03[x2y+2xy2]x0dx=91∫03x3dx=
=91[4x4]30=49
(f)
E(Y)=∫03∫0x272y(x+y)dydx=
=272∫03[2xy2+3y3]x0dx=815∫03x3dx=
=815[4x4]30=45
(g) Marginal probability distribution of X
fX(x)=∫0x272(x+y)dy=272[xy+2y2]x0=91x2 (h) Conditional probability distribution of Y given X = 1
fY∣X=1(y)=fX(1)fXY(1,y)=91(1)2272(1+y)=32(1+y) (i)
E(Y∣X=1)=∫13yfY∣x=1(y)dy=∫1332y(1+y)dy=
=32[2y2+3y3]31=976 (j)
P(Y>2∣X=1)=0
(k) Conditional probability distribution of X given Y = 2
Marginal probability distribution of Y
fY(y)=∫03272(x+y)dx=272[xy+2x2]30=
=272(3y+29)
fX∣Y=2(x)=fY(2)fXY(x,2)=32(1+2)272(x+2)=271(x+2)
Comments