"\\displaystyle\\int_{0}^3\\displaystyle\\int_{0}^xf(x,y)dydx=\\displaystyle\\int_{0}^3\\displaystyle\\int_{0}^xc(x+y)dydx="
"=c\\displaystyle\\int_{0}^3\\big[xy+{y^2 \\over 2}\\big]\\begin{matrix}\n x \\\\\n 0\n\\end{matrix}dx={3c \\over 2}\\displaystyle\\int_{0}^3x^2dx={c \\over 2}[x^3]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}={27c \\over 2}=1"
"c={2 \\over 27}"
"f(x,y)={2 \\over 27}(x+y),0<x<3,0<y<x"
a)
"={2 \\over 27}\\displaystyle\\int_{0}^1\\big[xy+{y^2 \\over 2}\\big]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}dx={2 \\over 27}\\displaystyle\\int_{0}^1(2x+2)dx="
"={2 \\over 27}\\big[x^2+2x\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}={2 \\over 9}"
b)
"=\\displaystyle\\int_{1}^2\\displaystyle\\int_{0}^x{2 \\over 27}(x+y)dydx={2 \\over 27}\\displaystyle\\int_{1}^2\\big[xy+{y^2 \\over 2}\\big]\\begin{matrix}\n x \\\\\n 0\n\\end{matrix}dx="
"={1 \\over 9}\\displaystyle\\int_{1}^2x^2dx={1 \\over 27}\\big[x^3\\big]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}={7 \\over 27}"
(c)
"=\\displaystyle\\int_{0}^3\\displaystyle\\int_{1}^x{2 \\over 27}(x+y)dydx={2 \\over 27}\\displaystyle\\int_{0}^3\\big[xy+{y^2 \\over 2}\\big]\\begin{matrix}\n x \\\\\n 1\n\\end{matrix}dx="
"={2 \\over 27}\\displaystyle\\int_{0}^3({3 \\over 2}x^2-x-{1 \\over 2})dx={1 \\over 27}\\big[x^3-x^2-x\\big]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}="
"={5 \\over 9}"
(d)
"=\\displaystyle\\int_{0}^2\\displaystyle\\int_{0}^2{2 \\over 27}(x+y)dydx={2 \\over 27}\\displaystyle\\int_{0}^2\\big[xy+{y^2 \\over 2}\\big]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}dx="
"={2 \\over 27}\\displaystyle\\int_{0}^2(2x+2)dx={2 \\over 27}\\big[x^2+2x\\big]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}={16 \\over 27}"
(e)
"={2 \\over 27}\\displaystyle\\int_{0}^3\\big[x^2y+{xy^2 \\over 2}\\big]\\begin{matrix}\n x \\\\\n 0\n\\end{matrix}dx={1 \\over 9}\\displaystyle\\int_{0}^3x^3dx="
"={1 \\over 9}\\big[{x^4 \\over 4}\\big]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}={9 \\over 4}"
(f)
"={2 \\over 27}\\displaystyle\\int_{0}^3\\big[{xy^2 \\over 2}+{y^3 \\over 3}\\big]\\begin{matrix}\n x \\\\\n 0\n\\end{matrix}dx={5 \\over 81}\\displaystyle\\int_{0}^3x^3dx="
"={5 \\over 81}\\big[{x^4 \\over 4}\\big]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}={5 \\over 4}"
(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y given X = 1
(i)
"={2 \\over 3}\\big[{y^2 \\over 2}+{y^3 \\over 3}\\big]\\begin{matrix}\n 3 \\\\\n 1\n\\end{matrix}={76 \\over 9}"
(j)
(k) Conditional probability distribution of X given Y = 2
Marginal probability distribution of Y
"={2 \\over 27}(3y+{9 \\over 2})"
"f_{X|Y=2}(x)={f_{XY}(x,2) \\over f_Y(2)}={{2 \\over 27}(x+2) \\over{2 \\over 3}(1+2)}={1 \\over 27}(x+2)"
Comments
Leave a comment