Question #116632
The following measurements were recorded for the drying time, in hours, of a certain brand of latex paint:
3.4 2.5 4.8 2.9 3.6
2.8 3.3 5.6 3.7 2.8
4.4 4.0 5.2 3.0 4.8
Assuming that the measurements represent a random sample from a normal population, find a 95% prediction interval for the drying time for the next trial of
the paint
1
Expert's answer
2020-05-19T19:06:54-0400

2.5,2.8,2.8,2.9,3.0,2.5, 2.8, 2.8, 2.9, 3.0,

3.3,3.4,3.6,3.7,4.0,3.3, 3.4, 3.6, 3.7, 4.0,

4.4,4.8,4.8,5.2,5.64.4, 4.8, 4.8, 5.2, 5.6



ixi=2.5+2.8+2.8+2.9+3.0+\sum_ix_i=2.5+ 2.8+ 2.8+2.9+3.0++3.3+3.4+3.6+3.7+4.0+4.4++3.3+3.4+3.6+ 3.7+ 4.0+4.4++4.8+4.8+5.2+5.6=56.8+4.8+4.8+5.2+5.6=56.8

mean=xˉ=ixin=56.8153.7867mean=\bar{x}={\sum_ix_i\over n}={56.8\over 15}\approx3.7867

i(xixˉ)2=2969.422513.1973\sum_i(x_i-\bar{x})^2={2969.4\over 225}\approx13.1973

s2=i(xixˉ)2n1=2969.4225(151)=212.1225s^2={\sum_i(x_i-\bar{x})^2\over n-1}={2969.4\over 225(15-1)}={212.1\over 225}

s=s2=212.12250.9709s=\sqrt{s^2}=\sqrt{{212.1\over 225}}\approx0.9709

The provided sample mean is xˉ=3.7867\bar{x}=3.7867 and the sample standard deviation is s=0.9709.s=0.9709.

The size of the sample is n=15n=15 and the required confidence level is 95%.

The number of degrees of freedom are df=n1=151=14,df=n-1=15-1=14, and the significance level is 

α=0.05.\alpha=0.05.

Based on the provided information, the critical t-value for α=0.05\alpha=0.05 and df=14df=14 degrees of freedom is tc=2.144787t_c=2.144787

The 95% confidence for the population μ\mu is computed using the following expression

CI=(xˉtc×s1+1/n,xˉ+tc×s1+1/n)CI=(\bar{x}-t_c\times s \sqrt{1+1/n},\bar{x}+t_c\times s \sqrt{1+1/n})

=(3.78672.144787×0.97091415,3.7867+2.144787×0.97091415)=(3.7867-2.144787\times{0.9709\sqrt{14}\over \sqrt{15}},3.7867+2.144787\times{0.9709\sqrt{14}\over \sqrt{15}})

=(1.7749,5.7985)=(1.7749, 5.7985)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS