Question #116704
A golfer recorded the following scores in 25 recent games:
88, 89, 102, 93, 99, 95, 94, 96, 84, 91, 95, 86, 95, 92, 102, 84, 104, 108, 92, 93, 92, 97, 96, 95, 82
a) Determine the mean and standard deviation
b) Assuming a normally distributed set of scores, what is the probability that the golfer will qualify for the club championship, which requires him to get a score under 83 on his next game?
1
Expert's answer
2020-05-18T20:09:42-0400

82,84,84,86,88,89,91,92,92,92,93,93,94,82,84,84,86,88,89,91,92,92,92,93,93,94,

95,95,95,95,96,96,97,99,102,102,104,10895,95,95,95,96,96,97,99,102,102,104,108

a)


mean=Xˉ=125(82+84+84+86+88+89+91+mean=\bar{X}={1\over 25}(82+84+84+86+88+89+91+92+92+92+93+93+94+95+95+95+9592+92+92+93+93+94+95+95+95+95+96+96+97+99+102+102+104+108)=93.76+96+96+97+99+102+102+104+108)=93.76

i=125(XiXˉ)2=(8293.76)2+2(8493.76)2+\displaystyle\sum_{i=1}^{25}(X_i-\bar{X})^2=(82-93.76)^2+2(84-93.76)^2++(8693.76)2+(8893.76)2+(8993.76)2+(86-93.76)^2+(88-93.76)^2+(89-93.76)^2

+(9193.76)2+3(9293.76)2+2(9393.76)2++(91-93.76)^2+3(92-93.76)^2+2(93-93.76)^2+

+(9493.76)2+4(9593.76)2+2(9693.76)2++(94-93.76)^2+4(95-93.76)^2+2(96-93.76)^2+

+(9793.76)2+(9993.76)2+2(10293.76)2++(97-93.76)^2+(99-93.76)^2+2(102-93.76)^2+

+(10493.76)2+(10893.76)2=960.56+(104-93.76)^2+(108-93.76)^2=960.56

s2=i=125(XiXˉ)2n1=960.56251=120.07340.023333s^2={\displaystyle\sum_{i=1}^{25}(X_i-\bar{X})^2\over n-1}={960.56\over 25-1}={120.07\over 3}\approx40.023333

s=s2=120.0736.3264s=\sqrt{s^2}=\sqrt{{120.07\over 3}}\approx6.3264

b)

XN(μ,σ2).X\sim N(\mu, \sigma^2). Then


Z=XμσN(0,1)Z={X-\mu\over \sigma}\sim N(0, 1)

μ=93.76,σ=6.3264\mu=93.76, \sigma=6.3264


P(X>83)=1P(X83)=1P(Z8393.766.3264)P(X>83)=1-P(X\leq 83)=1-P(Z\leq {83-93.76\over 6.3264})\approx

1P(Z1.7008)0.9554\approx1-P(Z\leq -1.7008)\approx0.9554


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS