Compute
"P(X>10)=\\displaystyle\\int_{10}^{\\infin}f(x)dx=\\displaystyle\\int_{10}^{20}0.005(20-x)dx="
"=0.005\\bigg[20x-{x^2\\over 2}\\bigg]\\begin{matrix}\n 20 \\\\\n 10\n\\end{matrix}=0.005(400-200-(200-50))="
"=0.25"
"P(X>18)=\\displaystyle\\int_{18}^{\\infin}f(x)dx=\\displaystyle\\int_{18}^{20}0.005(20-x)dx="
"=0.005\\bigg[20x-{x^2\\over 2}\\bigg]\\begin{matrix}\n 20 \\\\\n 18\n\\end{matrix}=0.005(400-200-(360-162))="
"=0.01"
"P(X>18|X>10)={P(X>18)\\over P(X>10)}={0.01\\over 0.25}=0.04"
Comments
Leave a comment