Let "X=" the number of days of consecutive days of snow beginning on April 1: "X\\sim P(\\lambda)"
Given "\\lambda=0.6."
Let "Y=" the amount that the insurance company must pay. The possible values for "Y" would be
"GHS\\ 0:X=0"
"GHS\\ 1,000:X=1"
"GHS\\ 2,000: X\\geq2"
Then
"P(Y=1000)=P(X=1)={e^{-0.6}0.6^1\\over 1!}=0.6e^{-0.6}"
"P(Y=2000)=P(X\\geq2)=1-P(X=0)-P(X=1)=""=1-e^{-0.6}-0.6e^{-0.6}=1-1.6e^{-0.6}"
"E(Y)=0\\cdot e^{-0.6}+1000\\cdot 0.6e^{-0.6}+2000\\cdot (1-1.6e^{-0.6})=""=2000-2600e^{-0.6}\\approx573.089746"
"E(Y^2)=0^2\\cdot e^{-0.6}+1000^2\\cdot 0.6e^{-0.6}+2000^2\\cdot (1-1.6e^{-0.6})=""=4000000-5800000e^{-0.6}\\approx816892.510655"
"Var(Y)=\\sigma^2=E(Y^2)-(E(Y))^2\\approx""=4000000-5800000e^{-0.6}\\approx816892.510655"
"\\sigma=\\sqrt{\\sigma^2}\\approx\\sqrt{488460.653685}\\approx699"
The standard deviation of the amount that the insurance company will have to pay is GHS "699."
Comments
Leave a comment