Let X be the expenditure per customer.
Given "n=40, \\mu=85, \\sigma=9."
Since "n=40>30," then "X\\sim N(\\mu,\\sigma^2\/n)."
a)
"\\approx1-P(1.405457)\\approx0.0799"
(b)
"\\approx P(-2.108185)\\approx0.0175"
(c)
"=P(Z<{85-85\\over 9\/\\sqrt{40}})-P(Z\\leq{83-85\\over 9\/\\sqrt{40}})\\approx"
"\\approx P(Z<0)-P(X\\leq-1.405457)\\approx"
"\\approx0.5-0.0799=0.4201"
Comments
Leave a comment