Question #115935
A random variable X has the cumulative distribution function given as
F (x) =
8><>:
0; for x < 1
x2 − 2x + 2
2 ; for 1 ≤ x < 2
1; for x ≥ 2
Calculate the variance of X
1
Expert's answer
2020-05-18T19:02:04-0400
F(x)={0for x<1x22x+22for 1x<21for x2F(x) = \begin{cases} 0 &\text{for } x<1 \\ \dfrac{x^2-2x+2}{2} &\text{for } 1\leq x<2 \\ 1 &\text{for } x\geq2 \end{cases}

The magnitude of the jump in the CDF that occur at x=1x=1 is 12.\dfrac{1}{2}.


f(x)=F(x)={δ(x1)2+x1for 1x<20otherwise f(x)=F'(x) = \begin{cases} {\delta(x-1)\over 2}+x-1 &\text{for } 1\leq x<2 \\ 0 &\text{otherwise } \end{cases}

E(X)=12x(δ(x1)2+x1)dx=E(X)=\displaystyle\int_{1}^2x( {\delta(x-1)\over 2}+x-1)dx=

=x2x=1+[x33x22]21=={x\over 2}|_{x=1}+\big[{x^3\over 3}-{x^2\over 2}\big]\begin{matrix} 2 \\ 1 \end{matrix}=

=12+83213+12=43={1\over 2}+{8\over 3}-2-{1\over 3}+{1\over 2}={4\over 3}

E(X2)=12x2(δ(x1)2+x1)dx=E(X^2 )=\displaystyle\int_{1}^2x^2 ( {\delta(x-1)\over 2}+x-1)dx=

=x22x=1+[x44x33]21=={x^2\over 2}|_{x=1}+\big[{x^4\over 4}-{x^3\over 3}\big]\begin{matrix} 2 \\ 1 \end{matrix}=

=12+48314+13=2312={1\over 2}+4-{8\over 3}-{1\over 4}+{1\over 3}={23\over 12}

V(X)=E(X2)(E(X))2=2312(43)2=536V(X)=E(X^2)-(E(X))^2={23\over 12}-({4\over 3})^2={5\over 36}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS