F ( x ) = { 0 for x < 1 x 2 − 2 x + 2 2 for 1 ≤ x < 2 1 for x ≥ 2 F(x) = \begin{cases}
0 &\text{for } x<1 \\
\dfrac{x^2-2x+2}{2} &\text{for } 1\leq x<2 \\
1 &\text{for } x\geq2
\end{cases} F ( x ) = ⎩ ⎨ ⎧ 0 2 x 2 − 2 x + 2 1 for x < 1 for 1 ≤ x < 2 for x ≥ 2 The magnitude of the jump in the CDF that occur at x = 1 x=1 x = 1 is 1 2 . \dfrac{1}{2}. 2 1 .
f ( x ) = F ′ ( x ) = { δ ( x − 1 ) 2 + x − 1 for 1 ≤ x < 2 0 otherwise f(x)=F'(x) = \begin{cases}
{\delta(x-1)\over 2}+x-1 &\text{for } 1\leq x<2 \\
0 &\text{otherwise }
\end{cases} f ( x ) = F ′ ( x ) = { 2 δ ( x − 1 ) + x − 1 0 for 1 ≤ x < 2 otherwise
E ( X ) = ∫ 1 2 x ( δ ( x − 1 ) 2 + x − 1 ) d x = E(X)=\displaystyle\int_{1}^2x( {\delta(x-1)\over 2}+x-1)dx= E ( X ) = ∫ 1 2 x ( 2 δ ( x − 1 ) + x − 1 ) d x =
= x 2 ∣ x = 1 + [ x 3 3 − x 2 2 ] 2 1 = ={x\over 2}|_{x=1}+\big[{x^3\over 3}-{x^2\over 2}\big]\begin{matrix}
2 \\
1
\end{matrix}= = 2 x ∣ x = 1 + [ 3 x 3 − 2 x 2 ] 2 1 =
= 1 2 + 8 3 − 2 − 1 3 + 1 2 = 4 3 ={1\over 2}+{8\over 3}-2-{1\over 3}+{1\over 2}={4\over 3} = 2 1 + 3 8 − 2 − 3 1 + 2 1 = 3 4
E ( X 2 ) = ∫ 1 2 x 2 ( δ ( x − 1 ) 2 + x − 1 ) d x = E(X^2 )=\displaystyle\int_{1}^2x^2 ( {\delta(x-1)\over 2}+x-1)dx= E ( X 2 ) = ∫ 1 2 x 2 ( 2 δ ( x − 1 ) + x − 1 ) d x =
= x 2 2 ∣ x = 1 + [ x 4 4 − x 3 3 ] 2 1 = ={x^2\over 2}|_{x=1}+\big[{x^4\over 4}-{x^3\over 3}\big]\begin{matrix}
2 \\
1
\end{matrix}= = 2 x 2 ∣ x = 1 + [ 4 x 4 − 3 x 3 ] 2 1 =
= 1 2 + 4 − 8 3 − 1 4 + 1 3 = 23 12 ={1\over 2}+4-{8\over 3}-{1\over 4}+{1\over 3}={23\over 12} = 2 1 + 4 − 3 8 − 4 1 + 3 1 = 12 23
V ( X ) = E ( X 2 ) − ( E ( X ) ) 2 = 23 12 − ( 4 3 ) 2 = 5 36 V(X)=E(X^2)-(E(X))^2={23\over 12}-({4\over 3})^2={5\over 36} V ( X ) = E ( X 2 ) − ( E ( X ) ) 2 = 12 23 − ( 3 4 ) 2 = 36 5
Comments