The magnitude of the jump in the CDF that occur at "x=1" is "\\dfrac{1}{2}."
"E(X)=\\displaystyle\\int_{1}^2x( {\\delta(x-1)\\over 2}+x-1)dx="
"={x\\over 2}|_{x=1}+\\big[{x^3\\over 3}-{x^2\\over 2}\\big]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}="
"={1\\over 2}+{8\\over 3}-2-{1\\over 3}+{1\\over 2}={4\\over 3}"
"E(X^2 )=\\displaystyle\\int_{1}^2x^2 ( {\\delta(x-1)\\over 2}+x-1)dx="
"={x^2\\over 2}|_{x=1}+\\big[{x^4\\over 4}-{x^3\\over 3}\\big]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}="
"={1\\over 2}+4-{8\\over 3}-{1\\over 4}+{1\\over 3}={23\\over 12}"
"V(X)=E(X^2)-(E(X))^2={23\\over 12}-({4\\over 3})^2={5\\over 36}"
Comments
Leave a comment