A continuous rv "X" is said to have a uniform distribution on the interval "[A,B]" if the pdf of "X" is
Suppose "X" follows the uniform distribution from the range (-a,a) where a is greater than zero.
"P(X<-1)=\\displaystyle\\int_{-\\infin}^{-1}f(x)dx=\\displaystyle\\int_{-a}^{-1}{1\\over 2a}dx=""={1\\over 2a}[x]\\begin{matrix}\n -1 \\\\\n -a\n\\end{matrix}=-{1\\over 2a}+{1\\over 2},a\\geq1"
"P(X<1)=\\displaystyle\\int_{-\\infin}^{1}f(x)dx=\\displaystyle\\int_{-a}^{1}{1\\over 2a}dx=""={1\\over 2a}[x]\\begin{matrix}\n 1 \\\\\n -a\n\\end{matrix}={1\\over 2a}+{1\\over 2},a\\geq1"
Given "P(X<-1)=\\dfrac{1}{3}"
"P(X>1)=1-P(X<1)=1-({1\\over 2(3)}+{1\\over 2})={1\\over 2}-{1\\over 6}={1\\over 3}"
"a=3."
Comments
Leave a comment