Question #115185
Suppose X follows the uniform distribution from the range (-a,a) where a is greater than zero. Find the value of a such that P(X<1)=(1/3)=P(X>1)
1
Expert's answer
2020-05-11T14:33:30-0400

A continuous rv XX is said to have a uniform distribution on the interval [A,B][A,B] if the pdf of XX is


f(x;A,B)={1BAAxB0otherwisef(x;A,B) = \begin{cases} {1\over B-A} &A\leq x\leq B\\ 0 &otherwise \end{cases}

Suppose XX follows the uniform distribution from the range (-a,a) where a is greater than zero.


f(x;a,a)={12aaxa0otherwise, a>0f(x;-a,a) = \begin{cases} {1\over 2a} & -a\leq x\leq a\\ 0 &otherwise \end{cases},\ a>0

P(X<1)=1f(x)dx=a112adx=P(X<-1)=\displaystyle\int_{-\infin}^{-1}f(x)dx=\displaystyle\int_{-a}^{-1}{1\over 2a}dx==12a[x]1a=12a+12,a1={1\over 2a}[x]\begin{matrix} -1 \\ -a \end{matrix}=-{1\over 2a}+{1\over 2},a\geq1

P(X<1)=1f(x)dx=a112adx=P(X<1)=\displaystyle\int_{-\infin}^{1}f(x)dx=\displaystyle\int_{-a}^{1}{1\over 2a}dx==12a[x]1a=12a+12,a1={1\over 2a}[x]\begin{matrix} 1 \\ -a \end{matrix}={1\over 2a}+{1\over 2},a\geq1

Given P(X<1)=13P(X<-1)=\dfrac{1}{3}


P(X<1)=12a+12=13P(X<-1)=-{1\over 2a}+{1\over 2}={1\over 3}12a=16{1\over 2a}={1\over 6}a=3a=3

P(X>1)=1P(X<1)=1(12(3)+12)=1216=13P(X>1)=1-P(X<1)=1-({1\over 2(3)}+{1\over 2})={1\over 2}-{1\over 6}={1\over 3}

a=3.a=3.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS